Normalized defining polynomial
\( x^{14} + 294 x^{12} - 665 x^{11} + 26467 x^{10} - 107492 x^{9} + 941430 x^{8} - 4272939 x^{7} + 16797641 x^{6} - 55907334 x^{5} + 117948719 x^{4} - 162190658 x^{3} + 189410389 x^{2} - 188014449 x + 196014583 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-23133267811084759683438204281363=-\,7^{25}\cdot 29^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $173.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(608,·)$, $\chi_{1421}(1,·)$, $\chi_{1421}(610,·)$, $\chi_{1421}(1219,·)$, $\chi_{1421}(1217,·)$, $\chi_{1421}(204,·)$, $\chi_{1421}(202,·)$, $\chi_{1421}(811,·)$, $\chi_{1421}(1420,·)$, $\chi_{1421}(813,·)$, $\chi_{1421}(405,·)$, $\chi_{1421}(1014,·)$, $\chi_{1421}(407,·)$, $\chi_{1421}(1016,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{2}{19} a^{8} + \frac{7}{19} a^{7} - \frac{7}{19} a^{6} + \frac{2}{19} a^{5} - \frac{7}{19} a^{4} + \frac{3}{19} a^{3} - \frac{3}{19} a^{2} + \frac{6}{19} a$, $\frac{1}{589} a^{10} + \frac{10}{589} a^{9} + \frac{211}{589} a^{8} + \frac{96}{589} a^{7} + \frac{89}{589} a^{6} + \frac{245}{589} a^{5} - \frac{43}{589} a^{4} + \frac{52}{589} a^{3} + \frac{8}{589} a^{2} + \frac{167}{589} a + \frac{7}{31}$, $\frac{1}{589} a^{11} - \frac{13}{589} a^{9} + \frac{1}{589} a^{8} + \frac{28}{589} a^{7} + \frac{223}{589} a^{6} + \frac{204}{589} a^{5} + \frac{172}{589} a^{4} + \frac{294}{589} a^{3} - \frac{130}{589} a^{2} + \frac{75}{589} a - \frac{8}{31}$, $\frac{1}{589} a^{12} + \frac{7}{589} a^{9} + \frac{74}{589} a^{8} + \frac{14}{589} a^{7} - \frac{127}{589} a^{6} + \frac{164}{589} a^{5} + \frac{14}{589} a^{4} + \frac{174}{589} a^{3} - \frac{2}{31} a^{2} + \frac{97}{589} a - \frac{2}{31}$, $\frac{1}{3168500939917812167253300837130397521551187129643} a^{13} + \frac{76488610028974934957930879241584287900212538}{3168500939917812167253300837130397521551187129643} a^{12} + \frac{1560084491484226669189228867990350630978808393}{3168500939917812167253300837130397521551187129643} a^{11} - \frac{1782356513088274247946735212333248505411424071}{3168500939917812167253300837130397521551187129643} a^{10} - \frac{6513798104157158893715163685488658293766598422}{3168500939917812167253300837130397521551187129643} a^{9} + \frac{96120657740534483971209054867651875835503258357}{3168500939917812167253300837130397521551187129643} a^{8} - \frac{48784849597666630872438577728591079080467262567}{166763207364095377223857938796336711660588796297} a^{7} - \frac{115405424900852548878935716911764936136029619588}{3168500939917812167253300837130397521551187129643} a^{6} + \frac{191322408886293555100732812120667644713535654649}{3168500939917812167253300837130397521551187129643} a^{5} - \frac{763624456167592066659471741026180783423296653379}{3168500939917812167253300837130397521551187129643} a^{4} + \frac{1121187300348109057732517969798475456914276237538}{3168500939917812167253300837130397521551187129643} a^{3} - \frac{406952970715436982695201381056726604442672822425}{3168500939917812167253300837130397521551187129643} a^{2} + \frac{766691800177930671922133579522120499010625918590}{3168500939917812167253300837130397521551187129643} a + \frac{35586974234573182122076125243299203203531316242}{166763207364095377223857938796336711660588796297}$
Class group and class number
$C_{405332}$, which has order $405332$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.59 | $x^{14} - 168 x^{13} + 70 x^{12} - 147 x^{11} + 147 x^{10} - 98 x^{9} + 49 x^{8} + 168 x^{7} - 49 x^{4} - 147 x^{3} - 49 x^{2} + 98 x + 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.14.7.1 | $x^{14} - 48778 x^{8} + 594823321 x^{2} - 155248886781$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |