Normalized defining polynomial
\( x^{14} + 2 x^{12} - 18 x^{11} - 35 x^{10} - 36 x^{9} + 101 x^{8} + 270 x^{7} + 542 x^{6} - 216 x^{5} + 2641 x^{4} + 144 x^{3} - 5380 x^{2} - 1008 x + 3568 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-230752268637185668771=-\,811^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $811$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{8} + \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{3}{8} a^{2} - \frac{5}{12} a + \frac{1}{6}$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{16} a^{4} + \frac{1}{16} a^{3} - \frac{1}{12} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{48} a^{11} - \frac{1}{48} a^{9} - \frac{1}{24} a^{8} - \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{23}{48} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{96} a^{12} - \frac{1}{96} a^{10} - \frac{1}{48} a^{9} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} - \frac{1}{4} a^{5} + \frac{23}{96} a^{4} + \frac{1}{4} a^{3} + \frac{1}{24} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{16743037837807488} a^{13} + \frac{71309368433107}{16743037837807488} a^{12} + \frac{81562002423947}{16743037837807488} a^{11} - \frac{22360480071099}{5581012612602496} a^{10} - \frac{25910364579121}{2790506306301248} a^{9} - \frac{100846282833937}{2790506306301248} a^{8} - \frac{316559629256783}{5581012612602496} a^{7} + \frac{186737379180413}{5581012612602496} a^{6} + \frac{2577612715173683}{16743037837807488} a^{5} + \frac{4169438003416193}{16743037837807488} a^{4} - \frac{726611340385055}{4185759459451872} a^{3} + \frac{337712991703225}{1395253153150624} a^{2} - \frac{20356049018989}{174406644143828} a + \frac{359109737055}{1564185149272}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 166968.173712 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-811}) \), 7.1.533411731.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.533411731.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 811 | Data not computed | ||||||