Normalized defining polynomial
\( x^{14} - 5 x^{13} + 48 x^{12} - 169 x^{11} + 1260 x^{10} - 3759 x^{9} + 24153 x^{8} - 61247 x^{7} + 328657 x^{6} - 650470 x^{5} + 2903596 x^{4} - 3877996 x^{3} + 14758999 x^{2} - 10152668 x + 33177421 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22764194375420436752520546875=-\,5^{7}\cdot 7^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1015=5\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1015}(384,·)$, $\chi_{1015}(1,·)$, $\chi_{1015}(36,·)$, $\chi_{1015}(806,·)$, $\chi_{1015}(489,·)$, $\chi_{1015}(139,·)$, $\chi_{1015}(141,·)$, $\chi_{1015}(944,·)$, $\chi_{1015}(596,·)$, $\chi_{1015}(981,·)$, $\chi_{1015}(281,·)$, $\chi_{1015}(314,·)$, $\chi_{1015}(349,·)$, $\chi_{1015}(629,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} - \frac{4}{17} a^{9} + \frac{7}{17} a^{8} + \frac{3}{17} a^{7} + \frac{3}{17} a^{6} + \frac{1}{17} a^{5} + \frac{2}{17} a^{4} - \frac{8}{17} a^{3} + \frac{5}{17} a^{2} - \frac{2}{17} a$, $\frac{1}{17} a^{11} + \frac{8}{17} a^{9} - \frac{3}{17} a^{8} - \frac{2}{17} a^{7} - \frac{4}{17} a^{6} + \frac{6}{17} a^{5} + \frac{7}{17} a^{3} + \frac{1}{17} a^{2} - \frac{8}{17} a$, $\frac{1}{17} a^{12} - \frac{5}{17} a^{9} - \frac{7}{17} a^{8} + \frac{6}{17} a^{7} - \frac{1}{17} a^{6} - \frac{8}{17} a^{5} + \frac{8}{17} a^{4} - \frac{3}{17} a^{3} + \frac{3}{17} a^{2} - \frac{1}{17} a$, $\frac{1}{916285702686575360946415314612847} a^{13} + \frac{11066191335911672042244026010877}{916285702686575360946415314612847} a^{12} + \frac{18954367305149895558846519867923}{916285702686575360946415314612847} a^{11} + \frac{8364904915771871262025807541963}{916285702686575360946415314612847} a^{10} + \frac{80695968051886127399830247782463}{916285702686575360946415314612847} a^{9} - \frac{137447439491646327824910401289037}{916285702686575360946415314612847} a^{8} + \frac{297637492833666525165092143568990}{916285702686575360946415314612847} a^{7} - \frac{28262680300761606811614742200099}{916285702686575360946415314612847} a^{6} + \frac{328879118701897009495350393027731}{916285702686575360946415314612847} a^{5} + \frac{359191029478574712914799856612729}{916285702686575360946415314612847} a^{4} + \frac{115639819701585992310630361677370}{916285702686575360946415314612847} a^{3} + \frac{318750550717682737679797095497428}{916285702686575360946415314612847} a^{2} - \frac{237684925227505330356648696678666}{916285702686575360946415314612847} a + \frac{11624392692914305048343819251}{311555832263371425007281643867}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{5306}$, which has order $42448$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |