Normalized defining polynomial
\( x^{14} - x^{13} + 16 x^{12} - 17 x^{11} + 66 x^{10} - 84 x^{9} + 38 x^{8} - 315 x^{7} + 65 x^{6} - 503 x^{5} + 1556 x^{4} + 665 x^{3} + 2377 x^{2} - 3516 x + 1681 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22439994995240462987343=-\,3^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(87=3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{87}(1,·)$, $\chi_{87}(35,·)$, $\chi_{87}(5,·)$, $\chi_{87}(38,·)$, $\chi_{87}(71,·)$, $\chi_{87}(7,·)$, $\chi_{87}(80,·)$, $\chi_{87}(49,·)$, $\chi_{87}(82,·)$, $\chi_{87}(52,·)$, $\chi_{87}(86,·)$, $\chi_{87}(25,·)$, $\chi_{87}(62,·)$, $\chi_{87}(16,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{17} a^{9} - \frac{6}{17} a^{8} - \frac{7}{17} a^{7} - \frac{7}{17} a^{6} + \frac{5}{17} a^{5} + \frac{6}{17} a^{4} - \frac{6}{17} a^{3} - \frac{6}{17} a^{2} - \frac{2}{17} a + \frac{4}{17}$, $\frac{1}{17} a^{10} + \frac{8}{17} a^{8} + \frac{2}{17} a^{7} - \frac{3}{17} a^{6} + \frac{2}{17} a^{5} - \frac{4}{17} a^{4} - \frac{8}{17} a^{3} - \frac{4}{17} a^{2} - \frac{8}{17} a + \frac{7}{17}$, $\frac{1}{17} a^{11} - \frac{1}{17} a^{8} + \frac{2}{17} a^{7} + \frac{7}{17} a^{6} + \frac{7}{17} a^{5} - \frac{5}{17} a^{4} - \frac{7}{17} a^{3} + \frac{6}{17} a^{2} + \frac{6}{17} a + \frac{2}{17}$, $\frac{1}{697} a^{12} - \frac{12}{697} a^{11} + \frac{9}{697} a^{10} - \frac{6}{697} a^{9} - \frac{258}{697} a^{8} + \frac{308}{697} a^{7} - \frac{1}{697} a^{6} + \frac{57}{697} a^{5} - \frac{13}{697} a^{4} + \frac{286}{697} a^{3} + \frac{217}{697} a^{2} + \frac{344}{697} a - \frac{7}{17}$, $\frac{1}{31584993917493479} a^{13} + \frac{856902660014}{31584993917493479} a^{12} + \frac{910220185274448}{31584993917493479} a^{11} - \frac{18054269152595}{770365705304719} a^{10} - \frac{681555880715611}{31584993917493479} a^{9} + \frac{989312706677007}{31584993917493479} a^{8} - \frac{5890871095340449}{31584993917493479} a^{7} - \frac{116597290667229}{31584993917493479} a^{6} + \frac{7488257435364579}{31584993917493479} a^{5} - \frac{8711982463399030}{31584993917493479} a^{4} - \frac{10183983355220626}{31584993917493479} a^{3} + \frac{13189889435689658}{31584993917493479} a^{2} - \frac{15403520131820925}{31584993917493479} a + \frac{333489547292032}{770365705304719}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}$, which has order $48$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.98510015 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |