Normalized defining polynomial
\( x^{14} - x^{13} + 5 x^{12} + 53 x^{11} - 244 x^{10} - 836 x^{9} + 2049 x^{8} + 5527 x^{7} + 10394 x^{6} + 4960 x^{5} - 21241 x^{4} + 21289 x^{3} + 157025 x^{2} + 187457 x + 72493 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2235879388560037062539773567=-\,127^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{127}(32,·)$, $\chi_{127}(1,·)$, $\chi_{127}(2,·)$, $\chi_{127}(4,·)$, $\chi_{127}(8,·)$, $\chi_{127}(64,·)$, $\chi_{127}(63,·)$, $\chi_{127}(111,·)$, $\chi_{127}(16,·)$, $\chi_{127}(119,·)$, $\chi_{127}(123,·)$, $\chi_{127}(125,·)$, $\chi_{127}(126,·)$, $\chi_{127}(95,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} + \frac{4}{19} a^{8} + \frac{7}{19} a^{7} - \frac{4}{19} a^{5} - \frac{5}{19} a^{4} + \frac{7}{19} a^{3} - \frac{1}{19} a^{2} - \frac{3}{19} a - \frac{9}{19}$, $\frac{1}{19} a^{10} - \frac{9}{19} a^{8} - \frac{9}{19} a^{7} - \frac{4}{19} a^{6} - \frac{8}{19} a^{5} + \frac{8}{19} a^{4} + \frac{9}{19} a^{3} + \frac{1}{19} a^{2} + \frac{3}{19} a - \frac{2}{19}$, $\frac{1}{19} a^{11} + \frac{8}{19} a^{8} + \frac{2}{19} a^{7} - \frac{8}{19} a^{6} - \frac{9}{19} a^{5} + \frac{2}{19} a^{4} + \frac{7}{19} a^{3} - \frac{6}{19} a^{2} + \frac{9}{19} a - \frac{5}{19}$, $\frac{1}{38627} a^{12} + \frac{124}{38627} a^{11} + \frac{160}{38627} a^{10} - \frac{169}{38627} a^{9} - \frac{10540}{38627} a^{8} - \frac{15986}{38627} a^{7} + \frac{3223}{38627} a^{6} + \frac{5192}{38627} a^{5} + \frac{16822}{38627} a^{4} + \frac{11684}{38627} a^{3} - \frac{5718}{38627} a^{2} + \frac{9247}{38627} a + \frac{14276}{38627}$, $\frac{1}{2112227343892961157398293} a^{13} + \frac{10214421585082390363}{2112227343892961157398293} a^{12} - \frac{39759920292003755699066}{2112227343892961157398293} a^{11} + \frac{46289550066330923654844}{2112227343892961157398293} a^{10} + \frac{43110616455054841591221}{2112227343892961157398293} a^{9} + \frac{85396830601528731312728}{2112227343892961157398293} a^{8} + \frac{595393954977151548112157}{2112227343892961157398293} a^{7} + \frac{891041461521983501070239}{2112227343892961157398293} a^{6} + \frac{434741313217475524976481}{2112227343892961157398293} a^{5} - \frac{167578874923921484553416}{2112227343892961157398293} a^{4} + \frac{225168239066282985066926}{2112227343892961157398293} a^{3} + \frac{41343228593633810257160}{111169860204892692494647} a^{2} - \frac{700725873098672271409945}{2112227343892961157398293} a - \frac{763924996540964878626076}{2112227343892961157398293}$
Class group and class number
$C_{215}$, which has order $215$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 546287.210347 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-127}) \), 7.7.4195872914689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $127$ | 127.14.13.11 | $x^{14} + 607437063$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |