Normalized defining polynomial
\( x^{14} - 2 x^{13} - 60 x^{12} - 64 x^{11} + 2966 x^{10} + 948 x^{9} - 55280 x^{8} - 117188 x^{7} + 1093128 x^{6} - 26052 x^{5} - 3601860 x^{4} - 8150904 x^{3} + 12778236 x^{2} + 28047240 x + 12774708 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21472479964358571500894158848=-\,2^{20}\cdot 3^{12}\cdot 7^{11}\cdot 11^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{14} a^{9} - \frac{1}{7} a^{8} - \frac{3}{14} a^{7} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{14} a^{10} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{42} a^{11} + \frac{1}{42} a^{10} + \frac{1}{21} a^{8} + \frac{4}{21} a^{7} - \frac{2}{7} a^{6} - \frac{10}{21} a^{5} - \frac{1}{3} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{1034922} a^{12} + \frac{9113}{1034922} a^{11} + \frac{9481}{1034922} a^{10} - \frac{4448}{517461} a^{9} + \frac{7787}{517461} a^{8} + \frac{110176}{517461} a^{7} + \frac{56090}{517461} a^{6} - \frac{136961}{517461} a^{5} + \frac{31310}{73923} a^{4} + \frac{9931}{24641} a^{3} - \frac{78101}{172487} a^{2} + \frac{11523}{24641} a + \frac{83081}{172487}$, $\frac{1}{1566268024540710311838584457652465788} a^{13} - \frac{24663200530393417850614437685}{783134012270355155919292228826232894} a^{12} + \frac{48734224783416913405159932760898}{9550414783784818974625514985685767} a^{11} + \frac{3407841953429952207318587451593647}{261044670756785051973097409608744298} a^{10} - \frac{26323738672109223221202474061985399}{783134012270355155919292228826232894} a^{9} + \frac{2556932842635421507563063027034238}{55938143733596796851378016344730921} a^{8} - \frac{3572376150029134081039751855591244}{18646047911198932283792672114910307} a^{7} + \frac{290948244402539009232461360604594449}{783134012270355155919292228826232894} a^{6} + \frac{30746873953864092325031308770646861}{391567006135177577959646114413116447} a^{5} + \frac{82545891566518324715741597461353670}{391567006135177577959646114413116447} a^{4} - \frac{17018818475084930111545595419942377}{130522335378392525986548704804372149} a^{3} - \frac{20687525090181684544437630982436635}{130522335378392525986548704804372149} a^{2} + \frac{4706344710900875681149847834417139}{18646047911198932283792672114910307} a - \frac{3130432320541884134091310596719287}{18646047911198932283792672114910307}$
Class group and class number
$C_{2}\times C_{2}\times C_{28}$, which has order $112$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13603403.850517571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-77}) \), 7.1.784147392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.20.10 | $x^{14} + 2 x^{12} + 2 x^{11} + 4 x^{10} + 2 x^{8} - 2 x^{7} - 2 x^{6} + 4 x^{4} + 4 x^{3} - 2$ | $14$ | $1$ | $20$ | $(C_7:C_3) \times C_2$ | $[2]_{7}^{3}$ |
| $3$ | 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 3.7.6.1 | $x^{7} - 3$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |