Normalized defining polynomial
\( x^{14} - x^{13} + 27 x^{12} - 963 x^{11} + 2856 x^{10} + 100640 x^{9} - 716739 x^{8} + 549511 x^{7} + 9890696 x^{6} - 41378938 x^{5} + 412351459 x^{4} - 4014600069 x^{3} + 19083041153 x^{2} - 44249771299 x + 41555683709 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21030741190818981798961548926499574343=-\,743^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $463.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $743$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(743\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{743}(1,·)$, $\chi_{743}(742,·)$, $\chi_{743}(328,·)$, $\chi_{743}(490,·)$, $\chi_{743}(111,·)$, $\chi_{743}(592,·)$, $\chi_{743}(433,·)$, $\chi_{743}(253,·)$, $\chi_{743}(310,·)$, $\chi_{743}(151,·)$, $\chi_{743}(632,·)$, $\chi_{743}(415,·)$, $\chi_{743}(232,·)$, $\chi_{743}(511,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{21493882165061105267230208137388625343046379704238886690530557} a^{13} - \frac{7929721882992088980518709900749431988222079202461916085735}{17896654592057539772881105859607514856824629229174759942157} a^{12} + \frac{5755347893736402053888654194982575355048797499305056194150761}{21493882165061105267230208137388625343046379704238886690530557} a^{11} + \frac{1075028727556568010271536052896428854959557961054852643453159}{21493882165061105267230208137388625343046379704238886690530557} a^{10} + \frac{9848883436561989156970237601188339474798679603148502639831848}{21493882165061105267230208137388625343046379704238886690530557} a^{9} + \frac{6033997444517289140181266374546151094466493993850808791104135}{21493882165061105267230208137388625343046379704238886690530557} a^{8} + \frac{6270673236303180832027592490056204461386389108267833991711301}{21493882165061105267230208137388625343046379704238886690530557} a^{7} + \frac{374602299538199629257119255337878573895674011809168219978220}{21493882165061105267230208137388625343046379704238886690530557} a^{6} - \frac{6242637404650974882196881308162468894757326862636350645538525}{21493882165061105267230208137388625343046379704238886690530557} a^{5} - \frac{4984451617731217230951134484799136624590522644421180321455525}{21493882165061105267230208137388625343046379704238886690530557} a^{4} + \frac{7412123319662073461287093937604085569350340231395743142735032}{21493882165061105267230208137388625343046379704238886690530557} a^{3} + \frac{531265760613663859094913858106495509305755657988518291954900}{21493882165061105267230208137388625343046379704238886690530557} a^{2} + \frac{8696591417973131637731865273760075317632966458687050807222452}{21493882165061105267230208137388625343046379704238886690530557} a + \frac{4554127237415181999561518608713312204749218727721634050282478}{21493882165061105267230208137388625343046379704238886690530557}$
Class group and class number
$C_{66003}$, which has order $66003$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63739206.972093605 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-743}) \), 7.7.168241403464173649.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 743 | Data not computed | ||||||