Normalized defining polynomial
\( x^{14} + 24 x^{12} + 250 x^{10} + 1396 x^{8} + 4297 x^{6} + 11020 x^{4} - 5052 x^{2} + 4448 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2102487927340409028608=-\,2^{21}\cdot 139^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{80} a^{8} - \frac{1}{10} a^{6} + \frac{1}{16} a^{4} - \frac{19}{40} a^{2} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{160} a^{9} - \frac{1}{20} a^{7} + \frac{1}{32} a^{5} - \frac{1}{4} a^{4} + \frac{1}{80} a^{3} - \frac{1}{4} a^{2} - \frac{1}{10} a$, $\frac{1}{160} a^{10} - \frac{19}{160} a^{6} + \frac{1}{80} a^{4} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{320} a^{11} - \frac{1}{320} a^{10} - \frac{1}{160} a^{8} - \frac{19}{320} a^{7} + \frac{7}{64} a^{6} + \frac{1}{160} a^{5} + \frac{17}{80} a^{4} - \frac{1}{4} a^{3} + \frac{39}{80} a^{2} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{191526400} a^{12} + \frac{241257}{191526400} a^{10} - \frac{934669}{191526400} a^{8} - \frac{22491881}{191526400} a^{6} - \frac{537411}{11970400} a^{4} - \frac{13325497}{47881600} a^{2} + \frac{2188517}{5985200}$, $\frac{1}{383052800} a^{13} - \frac{1}{383052800} a^{12} + \frac{241257}{383052800} a^{11} - \frac{241257}{383052800} a^{10} - \frac{934669}{383052800} a^{9} + \frac{934669}{383052800} a^{8} - \frac{22491881}{383052800} a^{7} + \frac{22491881}{383052800} a^{6} - \frac{537411}{23940800} a^{5} - \frac{5447789}{23940800} a^{4} - \frac{13325497}{95763200} a^{3} + \frac{37266297}{95763200} a^{2} + \frac{2188517}{11970400} a - \frac{2188517}{11970400}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2655130.27675 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-278}) \), 7.1.1375036928.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.1375036928.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $139$ | 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |