Normalized defining polynomial
\( x^{14} - x^{13} + 358 x^{12} - 366 x^{11} + 40159 x^{10} + 6901 x^{9} + 1703750 x^{8} + 1571901 x^{7} + 39941900 x^{6} + 54051465 x^{5} + 499919527 x^{4} + 560196080 x^{3} + 2982769075 x^{2} + 1543186750 x + 4370228125 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2098425699738568435088694126099051=-\,3^{7}\cdot 7^{7}\cdot 71^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $239.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1491=3\cdot 7\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1491}(1,·)$, $\chi_{1491}(1091,·)$, $\chi_{1491}(1028,·)$, $\chi_{1491}(41,·)$, $\chi_{1491}(1450,·)$, $\chi_{1491}(463,·)$, $\chi_{1491}(400,·)$, $\chi_{1491}(1490,·)$, $\chi_{1491}(1301,·)$, $\chi_{1491}(1175,·)$, $\chi_{1491}(1156,·)$, $\chi_{1491}(335,·)$, $\chi_{1491}(316,·)$, $\chi_{1491}(190,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{7} - \frac{2}{25} a^{6} - \frac{6}{25} a^{4} + \frac{4}{25} a^{3} - \frac{3}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{9} + \frac{2}{25} a^{7} + \frac{2}{25} a^{6} - \frac{1}{25} a^{5} + \frac{2}{5} a^{4} - \frac{12}{25} a^{3} + \frac{8}{25} a^{2} - \frac{2}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{125} a^{11} - \frac{2}{125} a^{10} + \frac{2}{125} a^{9} - \frac{2}{125} a^{8} + \frac{1}{25} a^{7} + \frac{12}{125} a^{6} - \frac{7}{125} a^{5} - \frac{18}{125} a^{4} + \frac{14}{125} a^{3} - \frac{6}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{125} a^{12} - \frac{2}{125} a^{10} + \frac{2}{125} a^{9} + \frac{1}{125} a^{8} - \frac{3}{125} a^{7} - \frac{8}{125} a^{6} - \frac{7}{125} a^{5} - \frac{22}{125} a^{4} + \frac{23}{125} a^{3} - \frac{2}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{9985002188278382947517531289125009134023322638581875} a^{13} + \frac{14858373249209470163703880661208252179721492214857}{9985002188278382947517531289125009134023322638581875} a^{12} + \frac{6611277322114336247574043091046100462678420348329}{9985002188278382947517531289125009134023322638581875} a^{11} - \frac{124427653468457171958387862840312760128847092696314}{9985002188278382947517531289125009134023322638581875} a^{10} + \frac{112249437929493739939273806090234417459178215688927}{9985002188278382947517531289125009134023322638581875} a^{9} + \frac{173370436419954755688988893881092907398003790541912}{9985002188278382947517531289125009134023322638581875} a^{8} + \frac{248435578098041201669488726892845867308140157507321}{9985002188278382947517531289125009134023322638581875} a^{7} + \frac{278444869360983596103149865127194641750892311139674}{9985002188278382947517531289125009134023322638581875} a^{6} + \frac{418888713640955784261115025116954179232065104903287}{9985002188278382947517531289125009134023322638581875} a^{5} - \frac{3995322028228957546927376385431668650522063267193234}{9985002188278382947517531289125009134023322638581875} a^{4} - \frac{4384479898235781146726691267178183407732418899937}{1997000437655676589503506257825001826804664527716375} a^{3} + \frac{58613670074694743108955524877240138639493607874267}{399400087531135317900701251565000365360932905543275} a^{2} + \frac{16418482236695228271005913938931976854968377631571}{79880017506227063580140250313000073072186581108655} a + \frac{3829007721096357477737208127590844187818739758361}{15976003501245412716028050062600014614437316221731}$
Class group and class number
$C_{2}\times C_{1046982}$, which has order $2093964$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-1491}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.14.13.1 | $x^{14} - 71$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |