Properties

Label 14.0.20935833553...3808.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,2^{12}\cdot 3^{12}\cdot 7^{10}\cdot 23^{7}$
Root discriminant $89.43$
Ramified primes $2, 3, 7, 23$
Class number $21$ (GRH)
Class group $[21]$ (GRH)
Galois group $F_7 \times C_2$ (as 14T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![299142, -344610, 432810, -341082, 317646, -171234, 94416, -38017, 15757, -4641, 1421, -287, 63, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - 7*x^13 + 63*x^12 - 287*x^11 + 1421*x^10 - 4641*x^9 + 15757*x^8 - 38017*x^7 + 94416*x^6 - 171234*x^5 + 317646*x^4 - 341082*x^3 + 432810*x^2 - 344610*x + 299142)
 
gp: K = bnfinit(x^14 - 7*x^13 + 63*x^12 - 287*x^11 + 1421*x^10 - 4641*x^9 + 15757*x^8 - 38017*x^7 + 94416*x^6 - 171234*x^5 + 317646*x^4 - 341082*x^3 + 432810*x^2 - 344610*x + 299142, 1)
 

Normalized defining polynomial

\( x^{14} - 7 x^{13} + 63 x^{12} - 287 x^{11} + 1421 x^{10} - 4641 x^{9} + 15757 x^{8} - 38017 x^{7} + 94416 x^{6} - 171234 x^{5} + 317646 x^{4} - 341082 x^{3} + 432810 x^{2} - 344610 x + 299142 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2093583355361649269668343808=-\,2^{12}\cdot 3^{12}\cdot 7^{10}\cdot 23^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $89.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{21} a^{12} + \frac{1}{7} a^{10} + \frac{2}{21} a^{8} - \frac{1}{3} a^{7} - \frac{1}{21} a^{6} + \frac{1}{3} a^{5} + \frac{4}{21} a^{4} - \frac{3}{7} a^{2} - \frac{2}{7}$, $\frac{1}{827956385282374472900513227119} a^{13} + \frac{4713836974354423382418597967}{275985461760791490966837742373} a^{12} - \frac{9779599560653134916824917131}{275985461760791490966837742373} a^{11} + \frac{36216502569598389321227551633}{827956385282374472900513227119} a^{10} - \frac{29202547020635160185973757592}{275985461760791490966837742373} a^{9} + \frac{16205470774911413520860669521}{275985461760791490966837742373} a^{8} - \frac{59513109527472650446693159970}{827956385282374472900513227119} a^{7} - \frac{112706239725697908604689091303}{275985461760791490966837742373} a^{6} + \frac{25317494768909778805426717548}{275985461760791490966837742373} a^{5} + \frac{131050856625258988111167078328}{275985461760791490966837742373} a^{4} + \frac{32989942552178841329381229}{275985461760791490966837742373} a^{3} + \frac{24382375675768577889925089393}{275985461760791490966837742373} a^{2} - \frac{31539579355289057244122897136}{275985461760791490966837742373} a - \frac{43700815232240617625748325249}{275985461760791490966837742373}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{21}$, which has order $21$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19738148.234190095 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times F_7$ (as 14T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 84
The 14 conjugacy class representatives for $F_7 \times C_2$
Character table for $F_7 \times C_2$

Intermediate fields

\(\Q(\sqrt{-23}) \), 7.1.784147392.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 14 sibling: data not computed
Degree 28 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ R ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.14.0.1}{14} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
$3$3.7.6.1$x^{7} - 3$$7$$1$$6$$F_7$$[\ ]_{7}^{6}$
3.7.6.1$x^{7} - 3$$7$$1$$6$$F_7$$[\ ]_{7}^{6}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$
$23$23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$