Normalized defining polynomial
\( x^{14} + 994 x^{12} + 306152 x^{10} + 36432088 x^{8} + 2012921568 x^{6} + 53383334592 x^{4} + 619597987904 x^{2} + 2162979688576 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2012216576615518185086019690871914496=-\,2^{21}\cdot 7^{7}\cdot 71^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $391.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3976=2^{3}\cdot 7\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3976}(897,·)$, $\chi_{3976}(1091,·)$, $\chi_{3976}(1,·)$, $\chi_{3976}(307,·)$, $\chi_{3976}(1035,·)$, $\chi_{3976}(531,·)$, $\chi_{3976}(2801,·)$, $\chi_{3976}(2323,·)$, $\chi_{3976}(953,·)$, $\chi_{3976}(1457,·)$, $\chi_{3976}(1681,·)$, $\chi_{3976}(3641,·)$, $\chi_{3976}(3163,·)$, $\chi_{3976}(1987,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{14} a^{2}$, $\frac{1}{14} a^{3}$, $\frac{1}{980} a^{4} - \frac{1}{5}$, $\frac{1}{980} a^{5} - \frac{1}{5} a$, $\frac{1}{13720} a^{6} - \frac{1}{70} a^{2}$, $\frac{1}{13720} a^{7} - \frac{1}{70} a^{3}$, $\frac{1}{960400} a^{8} - \frac{1}{2450} a^{4} + \frac{1}{25}$, $\frac{1}{960400} a^{9} - \frac{1}{2450} a^{5} + \frac{1}{25} a$, $\frac{1}{336140000} a^{10} - \frac{1}{6002500} a^{8} - \frac{57}{1715000} a^{6} - \frac{11}{61250} a^{4} + \frac{153}{4375} a^{2} + \frac{276}{625}$, $\frac{1}{5714380000} a^{11} + \frac{73}{204085000} a^{9} + \frac{1}{428750} a^{7} - \frac{41}{122500} a^{5} + \frac{3931}{148750} a^{3} + \frac{176}{10625} a$, $\frac{1}{22640373560000} a^{12} - \frac{227}{404292385000} a^{10} + \frac{27}{6794830000} a^{8} - \frac{7257}{485345000} a^{6} + \frac{170769}{589347500} a^{4} - \frac{1488973}{42096250} a^{2} + \frac{42788}{176875}$, $\frac{1}{22640373560000} a^{13} - \frac{59}{1617169540000} a^{11} + \frac{2069}{57756055000} a^{9} - \frac{3861}{485345000} a^{7} - \frac{90217}{294673750} a^{5} - \frac{1158429}{42096250} a^{3} + \frac{151309}{601375} a$
Class group and class number
$C_{2}\times C_{78796936}$, which has order $157593872$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-994}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.14.13.1 | $x^{14} - 71$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |