Properties

Label 14.0.20122165766...4496.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,2^{21}\cdot 7^{7}\cdot 71^{13}$
Root discriminant $391.85$
Ramified primes $2, 7, 71$
Class number $157593872$ (GRH)
Class group $[2, 78796936]$ (GRH)
Galois group $C_{14}$ (as 14T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2162979688576, 0, 619597987904, 0, 53383334592, 0, 2012921568, 0, 36432088, 0, 306152, 0, 994, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 + 994*x^12 + 306152*x^10 + 36432088*x^8 + 2012921568*x^6 + 53383334592*x^4 + 619597987904*x^2 + 2162979688576)
 
gp: K = bnfinit(x^14 + 994*x^12 + 306152*x^10 + 36432088*x^8 + 2012921568*x^6 + 53383334592*x^4 + 619597987904*x^2 + 2162979688576, 1)
 

Normalized defining polynomial

\( x^{14} + 994 x^{12} + 306152 x^{10} + 36432088 x^{8} + 2012921568 x^{6} + 53383334592 x^{4} + 619597987904 x^{2} + 2162979688576 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2012216576615518185086019690871914496=-\,2^{21}\cdot 7^{7}\cdot 71^{13}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $391.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 71$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3976=2^{3}\cdot 7\cdot 71\)
Dirichlet character group:    $\lbrace$$\chi_{3976}(897,·)$, $\chi_{3976}(1091,·)$, $\chi_{3976}(1,·)$, $\chi_{3976}(307,·)$, $\chi_{3976}(1035,·)$, $\chi_{3976}(531,·)$, $\chi_{3976}(2801,·)$, $\chi_{3976}(2323,·)$, $\chi_{3976}(953,·)$, $\chi_{3976}(1457,·)$, $\chi_{3976}(1681,·)$, $\chi_{3976}(3641,·)$, $\chi_{3976}(3163,·)$, $\chi_{3976}(1987,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{14} a^{2}$, $\frac{1}{14} a^{3}$, $\frac{1}{980} a^{4} - \frac{1}{5}$, $\frac{1}{980} a^{5} - \frac{1}{5} a$, $\frac{1}{13720} a^{6} - \frac{1}{70} a^{2}$, $\frac{1}{13720} a^{7} - \frac{1}{70} a^{3}$, $\frac{1}{960400} a^{8} - \frac{1}{2450} a^{4} + \frac{1}{25}$, $\frac{1}{960400} a^{9} - \frac{1}{2450} a^{5} + \frac{1}{25} a$, $\frac{1}{336140000} a^{10} - \frac{1}{6002500} a^{8} - \frac{57}{1715000} a^{6} - \frac{11}{61250} a^{4} + \frac{153}{4375} a^{2} + \frac{276}{625}$, $\frac{1}{5714380000} a^{11} + \frac{73}{204085000} a^{9} + \frac{1}{428750} a^{7} - \frac{41}{122500} a^{5} + \frac{3931}{148750} a^{3} + \frac{176}{10625} a$, $\frac{1}{22640373560000} a^{12} - \frac{227}{404292385000} a^{10} + \frac{27}{6794830000} a^{8} - \frac{7257}{485345000} a^{6} + \frac{170769}{589347500} a^{4} - \frac{1488973}{42096250} a^{2} + \frac{42788}{176875}$, $\frac{1}{22640373560000} a^{13} - \frac{59}{1617169540000} a^{11} + \frac{2069}{57756055000} a^{9} - \frac{3861}{485345000} a^{7} - \frac{90217}{294673750} a^{5} - \frac{1158429}{42096250} a^{3} + \frac{151309}{601375} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{78796936}$, which has order $157593872$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 315114.6966253571 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{14}$ (as 14T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 14
The 14 conjugacy class representatives for $C_{14}$
Character table for $C_{14}$

Intermediate fields

\(\Q(\sqrt{-994}) \), 7.7.128100283921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.14.0.1}{14} }$ ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ R ${\href{/LocalNumberField/11.14.0.1}{14} }$ ${\href{/LocalNumberField/13.14.0.1}{14} }$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ ${\href{/LocalNumberField/19.14.0.1}{14} }$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/29.14.0.1}{14} }$ ${\href{/LocalNumberField/31.14.0.1}{14} }$ ${\href{/LocalNumberField/37.14.0.1}{14} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/47.14.0.1}{14} }$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.14.21.6$x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$$2$$7$$21$$C_{14}$$[3]^{7}$
$7$7.14.7.1$x^{14} - 117649 x^{2} + 1647086$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
$71$71.14.13.1$x^{14} - 71$$14$$1$$13$$C_{14}$$[\ ]_{14}$