Normalized defining polynomial
\( x^{14} - x^{13} + 74 x^{12} - 75 x^{11} + 1806 x^{10} - 1882 x^{9} + 17670 x^{8} - 25893 x^{7} + 68157 x^{6} - 189003 x^{5} + 252348 x^{4} - 306967 x^{3} + 1166437 x^{2} - 1133182 x + 741761 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-199950626296934196778017319=-\,11^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(319=11\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{319}(1,·)$, $\chi_{319}(199,·)$, $\chi_{319}(296,·)$, $\chi_{319}(210,·)$, $\chi_{319}(45,·)$, $\chi_{319}(78,·)$, $\chi_{319}(109,·)$, $\chi_{319}(208,·)$, $\chi_{319}(241,·)$, $\chi_{319}(274,·)$, $\chi_{319}(23,·)$, $\chi_{319}(120,·)$, $\chi_{319}(111,·)$, $\chi_{319}(318,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} + \frac{6}{17} a^{9} + \frac{6}{17} a^{8} + \frac{8}{17} a^{7} + \frac{5}{17} a^{6} + \frac{1}{17} a^{5} + \frac{7}{17} a^{4} - \frac{2}{17} a^{3} + \frac{4}{17} a^{2} - \frac{7}{17} a$, $\frac{1}{17} a^{11} + \frac{4}{17} a^{9} + \frac{6}{17} a^{8} + \frac{8}{17} a^{7} + \frac{5}{17} a^{6} + \frac{1}{17} a^{5} + \frac{7}{17} a^{4} - \frac{1}{17} a^{3} + \frac{3}{17} a^{2} + \frac{8}{17} a$, $\frac{1}{41123} a^{12} - \frac{342}{41123} a^{11} + \frac{342}{41123} a^{10} - \frac{7324}{41123} a^{9} + \frac{2364}{41123} a^{8} - \frac{373}{1003} a^{7} + \frac{6339}{41123} a^{6} - \frac{17813}{41123} a^{5} + \frac{17090}{41123} a^{4} - \frac{552}{41123} a^{3} - \frac{15901}{41123} a^{2} + \frac{14142}{41123} a + \frac{910}{2419}$, $\frac{1}{453932205816323912771775575765689} a^{13} - \frac{3241545864512371210294240049}{453932205816323912771775575765689} a^{12} + \frac{939578144218307626034301932130}{453932205816323912771775575765689} a^{11} - \frac{5724678145183562042964308683134}{453932205816323912771775575765689} a^{10} + \frac{146721737369751038736647752150595}{453932205816323912771775575765689} a^{9} + \frac{4613864510021973356762872624451}{11071517215032290555409160384529} a^{8} + \frac{21016169604299479845683838842023}{453932205816323912771775575765689} a^{7} + \frac{18852173063594335176035586979646}{453932205816323912771775575765689} a^{6} - \frac{30523423398360247066816948670}{7693766200276676487657213148571} a^{5} + \frac{106444749402879399516379870881276}{453932205816323912771775575765689} a^{4} + \frac{146060283860839032197641567588214}{453932205816323912771775575765689} a^{3} + \frac{69631911095663556247735404260611}{453932205816323912771775575765689} a^{2} - \frac{107491127950799565584137694063604}{453932205816323912771775575765689} a - \frac{244296166150193131214696688668}{651265718531311209141715316737}$
Class group and class number
$C_{2}\times C_{8}\times C_{8}\times C_{40}$, which has order $5120$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-319}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.14.7.1 | $x^{14} - 2662 x^{8} + 1771561 x^{2} - 311794736$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |