Normalized defining polynomial
\( x^{14} - 5 x^{13} - 217 x^{12} - 287 x^{11} + 15080 x^{10} + 103162 x^{9} + 205552 x^{8} - 156315 x^{7} - 490648 x^{6} + 2570346 x^{5} + 9043905 x^{4} + 11488539 x^{3} + 16150610 x^{2} + 29680369 x + 40539809 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-199600727086494002686044072453147223=-\,7^{7}\cdot 281^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $332.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 281$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1967=7\cdot 281\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1967}(1,·)$, $\chi_{1967}(1765,·)$, $\chi_{1967}(902,·)$, $\chi_{1967}(743,·)$, $\chi_{1967}(1289,·)$, $\chi_{1967}(811,·)$, $\chi_{1967}(1233,·)$, $\chi_{1967}(1203,·)$, $\chi_{1967}(181,·)$, $\chi_{1967}(727,·)$, $\chi_{1967}(1464,·)$, $\chi_{1967}(1373,·)$, $\chi_{1967}(1406,·)$, $\chi_{1967}(671,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} - \frac{2}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{3}{7} a^{7} - \frac{3}{7} a^{6} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{12175079} a^{12} - \frac{59912}{1739297} a^{11} + \frac{138246}{12175079} a^{10} + \frac{2728552}{12175079} a^{9} + \frac{4235611}{12175079} a^{8} - \frac{2744873}{12175079} a^{7} + \frac{1552984}{12175079} a^{6} - \frac{4984802}{12175079} a^{5} + \frac{3112761}{12175079} a^{4} - \frac{1492524}{12175079} a^{3} + \frac{5037727}{12175079} a^{2} + \frac{4440640}{12175079} a - \frac{5833082}{12175079}$, $\frac{1}{814616481086952227388755188583768572753} a^{13} + \frac{390363122694376438421379030248}{814616481086952227388755188583768572753} a^{12} - \frac{25633054139070274673888435281131677031}{814616481086952227388755188583768572753} a^{11} - \frac{56401514387578568836338231077871928910}{814616481086952227388755188583768572753} a^{10} + \frac{378044552332454359515886876182157032535}{814616481086952227388755188583768572753} a^{9} - \frac{25953515754864437024613426208458274980}{116373783012421746769822169797681224679} a^{8} + \frac{74275966003028218300872475381992411470}{814616481086952227388755188583768572753} a^{7} + \frac{304966529352821026803387428755836545707}{814616481086952227388755188583768572753} a^{6} + \frac{277794330777592988474595143307856142432}{814616481086952227388755188583768572753} a^{5} - \frac{240172771820938725228370141254611771658}{814616481086952227388755188583768572753} a^{4} + \frac{22297883983807621528510472883923589680}{116373783012421746769822169797681224679} a^{3} + \frac{395897094122405342504939234750441890956}{814616481086952227388755188583768572753} a^{2} - \frac{84448339991678269578871086776558311003}{814616481086952227388755188583768572753} a - \frac{156549769469293329175201495473017674577}{814616481086952227388755188583768572753}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{812}$, which has order $103936$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12176100.831221418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.492309163417681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 281 | Data not computed | ||||||