Normalized defining polynomial
\( x^{14} - x^{13} + 32 x^{12} - 766 x^{11} - 3350 x^{10} - 49474 x^{9} + 1057143 x^{8} - 6931854 x^{7} + 98559596 x^{6} - 654977697 x^{5} + 2734738830 x^{4} - 9840332223 x^{3} + 18337865967 x^{2} - 41024712654 x + 132193055349 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-198376007989432085363129684509608357763=-\,883^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $543.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(883\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{883}(1,·)$, $\chi_{883}(707,·)$, $\chi_{883}(134,·)$, $\chi_{883}(199,·)$, $\chi_{883}(296,·)$, $\chi_{883}(684,·)$, $\chi_{883}(587,·)$, $\chi_{883}(812,·)$, $\chi_{883}(749,·)$, $\chi_{883}(176,·)$, $\chi_{883}(626,·)$, $\chi_{883}(71,·)$, $\chi_{883}(882,·)$, $\chi_{883}(257,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{10} - \frac{1}{27} a^{8} - \frac{2}{27} a^{7} + \frac{2}{27} a^{6} + \frac{4}{27} a^{5} + \frac{13}{27} a^{4} - \frac{2}{27} a^{3} + \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{11} - \frac{1}{81} a^{10} - \frac{4}{81} a^{9} - \frac{1}{81} a^{8} - \frac{11}{81} a^{7} + \frac{8}{81} a^{6} + \frac{1}{27} a^{5} - \frac{2}{9} a^{4} + \frac{38}{81} a^{3} + \frac{1}{27} a^{2} - \frac{2}{9} a$, $\frac{1}{729} a^{12} - \frac{1}{729} a^{11} + \frac{5}{729} a^{10} - \frac{37}{729} a^{9} - \frac{2}{729} a^{8} + \frac{71}{729} a^{7} + \frac{13}{243} a^{6} + \frac{2}{81} a^{5} + \frac{146}{729} a^{4} + \frac{115}{243} a^{3} + \frac{34}{81} a^{2} - \frac{1}{9} a$, $\frac{1}{1568511970661082679829691394788030682189570483997112489129} a^{13} - \frac{412491726632676219078549014935548877578339127146365362}{1568511970661082679829691394788030682189570483997112489129} a^{12} - \frac{5768905920442546442825539246125287083025692338756724885}{1568511970661082679829691394788030682189570483997112489129} a^{11} + \frac{19559096499734771929242122947593306260338727800733625869}{1568511970661082679829691394788030682189570483997112489129} a^{10} + \frac{54155020805077185033922277723794764757802142808007563804}{1568511970661082679829691394788030682189570483997112489129} a^{9} - \frac{75257145530879223007770864432519255717048361586372265373}{1568511970661082679829691394788030682189570483997112489129} a^{8} - \frac{33875505914380289706133908943003091895669785419825573364}{522837323553694226609897131596010227396523494665704163043} a^{7} - \frac{8648524523350407114269358421635033182771510988881547565}{174279107851231408869965710532003409132174498221901387681} a^{6} + \frac{195081185468665769089330110476925988104726900565628509019}{1568511970661082679829691394788030682189570483997112489129} a^{5} - \frac{183244497193027314472742875780770701248150007630055587960}{522837323553694226609897131596010227396523494665704163043} a^{4} + \frac{24295593931865898163913190699705496602595761719349194860}{174279107851231408869965710532003409132174498221901387681} a^{3} - \frac{3153198395384106366180611515749791962447979433758047003}{19364345316803489874440634503555934348019388691322376409} a^{2} + \frac{773681045648554860809728110992195865592662682814953888}{2151593924089276652715626055950659372002154299035819601} a - \frac{899645174822680550284920306820116700538117249193991}{3367126641767256107536191010877401208141086539962159}$
Class group and class number
$C_{3489}$, which has order $3489$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8256963011.914384 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-883}) \), 7.7.473984589097059769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 883 | Data not computed | ||||||