Properties

Label 14.0.19773267430...0000.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,2^{12}\cdot 5^{12}\cdot 7^{11}$
Root discriminant $33.20$
Ramified primes $2, 5, 7$
Class number $1$
Class group Trivial
Galois group $F_7$ (as 14T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 6, 250, -408, 1158, 388, 594, -435, -107, -23, 59, 17, -15, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 - x^13 - 15*x^12 + 17*x^11 + 59*x^10 - 23*x^9 - 107*x^8 - 435*x^7 + 594*x^6 + 388*x^5 + 1158*x^4 - 408*x^3 + 250*x^2 + 6*x + 2)
 
gp: K = bnfinit(x^14 - x^13 - 15*x^12 + 17*x^11 + 59*x^10 - 23*x^9 - 107*x^8 - 435*x^7 + 594*x^6 + 388*x^5 + 1158*x^4 - 408*x^3 + 250*x^2 + 6*x + 2, 1)
 

Normalized defining polynomial

\( x^{14} - x^{13} - 15 x^{12} + 17 x^{11} + 59 x^{10} - 23 x^{9} - 107 x^{8} - 435 x^{7} + 594 x^{6} + 388 x^{5} + 1158 x^{4} - 408 x^{3} + 250 x^{2} + 6 x + 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1977326743000000000000=-\,2^{12}\cdot 5^{12}\cdot 7^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{11} a^{11} + \frac{2}{11} a^{10} - \frac{4}{11} a^{9} - \frac{1}{11} a^{8} + \frac{4}{11} a^{7} + \frac{4}{11} a^{6} - \frac{4}{11} a^{5} + \frac{4}{11} a^{4} + \frac{5}{11} a^{3} + \frac{3}{11} a^{2} - \frac{5}{11} a - \frac{4}{11}$, $\frac{1}{473} a^{12} - \frac{21}{473} a^{11} + \frac{225}{473} a^{10} + \frac{157}{473} a^{9} + \frac{236}{473} a^{8} - \frac{2}{43} a^{7} + \frac{36}{473} a^{6} + \frac{96}{473} a^{5} - \frac{109}{473} a^{4} - \frac{178}{473} a^{3} - \frac{3}{11} a^{2} + \frac{199}{473} a - \frac{161}{473}$, $\frac{1}{13547955806627} a^{13} + \frac{12379551315}{13547955806627} a^{12} - \frac{137438584253}{13547955806627} a^{11} - \frac{4055119528776}{13547955806627} a^{10} + \frac{4455941572171}{13547955806627} a^{9} - \frac{3294739031500}{13547955806627} a^{8} - \frac{3017158066746}{13547955806627} a^{7} + \frac{412587467959}{1231632346057} a^{6} - \frac{4094210723176}{13547955806627} a^{5} + \frac{5407855341135}{13547955806627} a^{4} - \frac{4000871983637}{13547955806627} a^{3} + \frac{2163961037325}{13547955806627} a^{2} - \frac{258628756101}{13547955806627} a + \frac{584840440497}{13547955806627}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 421014.85114896303 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$F_7$ (as 14T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 42
The 7 conjugacy class representatives for $F_7$
Character table for $F_7$

Intermediate fields

\(\Q(\sqrt{-7}) \), 7.1.16807000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 7 sibling: data not computed
Degree 21 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ R R ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{14}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
2.7.6.1$x^{7} - 2$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$
$5$5.14.12.1$x^{14} - 5 x^{7} + 50$$7$$2$$12$$F_7$$[\ ]_{7}^{6}$
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$