Normalized defining polynomial
\( x^{14} + 49 x^{12} - 42 x^{11} + 1988 x^{10} + 560 x^{9} + 59423 x^{8} + 56436 x^{7} + 1275554 x^{6} + 1649242 x^{5} + 18366768 x^{4} + 21707980 x^{3} + 161055601 x^{2} + 135111620 x + 665398601 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-196959242717829613546212447305728=-\,2^{14}\cdot 7^{24}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $202.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2548=2^{2}\cdot 7^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2548}(1,·)$, $\chi_{2548}(2339,·)$, $\chi_{2548}(1093,·)$, $\chi_{2548}(519,·)$, $\chi_{2548}(2185,·)$, $\chi_{2548}(1611,·)$, $\chi_{2548}(365,·)$, $\chi_{2548}(1457,·)$, $\chi_{2548}(883,·)$, $\chi_{2548}(1975,·)$, $\chi_{2548}(729,·)$, $\chi_{2548}(155,·)$, $\chi_{2548}(1821,·)$, $\chi_{2548}(1247,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{589} a^{11} + \frac{256}{589} a^{10} - \frac{288}{589} a^{9} - \frac{196}{589} a^{8} + \frac{145}{589} a^{7} - \frac{53}{589} a^{6} + \frac{67}{589} a^{5} - \frac{5}{19} a^{4} + \frac{24}{589} a^{3} + \frac{147}{589} a^{2} + \frac{89}{589} a$, $\frac{1}{589} a^{12} + \frac{144}{589} a^{10} - \frac{3}{19} a^{9} + \frac{256}{589} a^{8} - \frac{66}{589} a^{7} + \frac{88}{589} a^{6} - \frac{226}{589} a^{5} + \frac{241}{589} a^{4} - \frac{107}{589} a^{3} + \frac{153}{589} a^{2} + \frac{187}{589} a$, $\frac{1}{100064144588917322288429718382340131829} a^{13} - \frac{67391510188981266370188146709169024}{100064144588917322288429718382340131829} a^{12} - \frac{25379735691257920718952114291837002}{100064144588917322288429718382340131829} a^{11} - \frac{16943043369072060417142855831406981396}{100064144588917322288429718382340131829} a^{10} - \frac{41592549531586628451237593095465275875}{100064144588917322288429718382340131829} a^{9} + \frac{96827109564177575333770244134317334}{5266533925732490646759458862228427991} a^{8} + \frac{44311792169069126838713269112693922015}{100064144588917322288429718382340131829} a^{7} - \frac{5652521391001236396102825121146304776}{100064144588917322288429718382340131829} a^{6} + \frac{40755702615673772771057049101434342479}{100064144588917322288429718382340131829} a^{5} + \frac{45187162005929280318437461124951260755}{100064144588917322288429718382340131829} a^{4} - \frac{17971517916960221230489412729642589851}{100064144588917322288429718382340131829} a^{3} + \frac{32906486519937972143690731488609565196}{100064144588917322288429718382340131829} a^{2} + \frac{39391170514755867932193758613130244324}{100064144588917322288429718382340131829} a + \frac{54821368662094453263388042548804955}{169888191152660988605143834265433161}$
Class group and class number
$C_{1217566}$, which has order $1217566$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ | |
| $13$ | 13.14.7.1 | $x^{14} - 43940 x^{8} + 482680900 x^{2} - 250994068$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |