Normalized defining polynomial
\( x^{14} + 798 x^{12} + 194579 x^{10} + 16468459 x^{8} + 491701133 x^{6} + 3639865530 x^{4} + 9220992676 x^{2} + 6257102173 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19640210869081831858492466681823232=-\,2^{14}\cdot 7^{25}\cdot 19^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $281.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3724=2^{2}\cdot 7^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3724}(1,·)$, $\chi_{3724}(2659,·)$, $\chi_{3724}(2661,·)$, $\chi_{3724}(1063,·)$, $\chi_{3724}(1065,·)$, $\chi_{3724}(3723,·)$, $\chi_{3724}(2127,·)$, $\chi_{3724}(2129,·)$, $\chi_{3724}(531,·)$, $\chi_{3724}(533,·)$, $\chi_{3724}(3191,·)$, $\chi_{3724}(3193,·)$, $\chi_{3724}(1595,·)$, $\chi_{3724}(1597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{19} a^{2}$, $\frac{1}{19} a^{3}$, $\frac{1}{361} a^{4}$, $\frac{1}{361} a^{5}$, $\frac{1}{6859} a^{6}$, $\frac{1}{6859} a^{7}$, $\frac{1}{130321} a^{8}$, $\frac{1}{130321} a^{9}$, $\frac{1}{3716624599} a^{10} - \frac{302}{195611821} a^{8} - \frac{236}{10295359} a^{6} - \frac{303}{541861} a^{4} - \frac{55}{28519} a^{2} + \frac{638}{1501}$, $\frac{1}{3716624599} a^{11} - \frac{302}{195611821} a^{9} - \frac{236}{10295359} a^{7} - \frac{303}{541861} a^{5} - \frac{55}{28519} a^{3} + \frac{638}{1501} a$, $\frac{1}{2189091888811} a^{12} + \frac{9}{115215362569} a^{10} - \frac{4098}{6063966451} a^{8} + \frac{5854}{319156129} a^{6} - \frac{2727}{16797691} a^{4} + \frac{10551}{884089} a^{2} - \frac{16225}{46531}$, $\frac{1}{2189091888811} a^{13} + \frac{9}{115215362569} a^{11} - \frac{4098}{6063966451} a^{9} + \frac{5854}{319156129} a^{7} - \frac{2727}{16797691} a^{5} + \frac{10551}{884089} a^{3} - \frac{16225}{46531} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{58}\times C_{1682}$, which has order $6243584$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-133}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $7$ | 7.14.25.75 | $x^{14} + 112 x^{13} + 28 x^{12} - 98 x^{11} + 147 x^{10} + 98 x^{9} + 49 x^{8} - 161 x^{7} + 49 x^{6} + 147 x^{5} + 147 x^{2} - 147 x - 126$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |