Normalized defining polynomial
\( x^{14} + 32 x^{12} + 236 x^{10} + 1227 x^{8} + 24852 x^{6} + 110594 x^{4} + 6367700 x^{2} + 6626239 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1884940749689661095518792759=-\,7879^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{18} a^{8} + \frac{1}{9} a^{6} - \frac{1}{2} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{2} - \frac{1}{2} a - \frac{1}{9}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{7} - \frac{1}{6} a^{6} + \frac{4}{9} a^{5} - \frac{1}{6} a^{4} - \frac{2}{9} a^{3} - \frac{1}{6} a^{2} + \frac{2}{9} a - \frac{1}{6}$, $\frac{1}{54} a^{10} - \frac{1}{27} a^{6} - \frac{5}{54} a^{4} - \frac{1}{2} a^{3} - \frac{23}{54}$, $\frac{1}{54} a^{11} - \frac{1}{27} a^{7} - \frac{5}{54} a^{5} - \frac{1}{2} a^{4} - \frac{23}{54} a$, $\frac{1}{363037840780642146} a^{12} + \frac{1605289400999749}{363037840780642146} a^{10} + \frac{4583539222435483}{363037840780642146} a^{8} - \frac{4897293197643379}{51862548682948878} a^{6} - \frac{51002431685403791}{363037840780642146} a^{4} - \frac{1}{2} a^{3} + \frac{99766686874485091}{363037840780642146} a^{2} - \frac{1}{2} a - \frac{43014485971483925}{363037840780642146}$, $\frac{1}{10528097382638622234} a^{13} + \frac{24332875121467421}{5264048691319311117} a^{11} + \frac{72882460874120381}{5264048691319311117} a^{9} - \frac{47155666198564687}{1504013911805517462} a^{7} - \frac{1}{6} a^{6} - \frac{2422223257292681989}{5264048691319311117} a^{5} + \frac{1}{3} a^{4} - \frac{2522173274319041519}{10528097382638622234} a^{3} + \frac{1}{3} a^{2} + \frac{1232317892302957301}{5264048691319311117} a + \frac{1}{3}$
Class group and class number
$C_{13}\times C_{91}$, which has order $1183$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 207826.01611 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-7879}) \), 7.1.489117612439.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.489117612439.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7879 | Data not computed | ||||||