Normalized defining polynomial
\( x^{14} + 15 x^{12} - 78 x^{11} + 232 x^{10} - 832 x^{9} + 3072 x^{8} - 7046 x^{7} + 18996 x^{6} - 39026 x^{5} + 71164 x^{4} - 122460 x^{3} + 151847 x^{2} - 114686 x + 47545 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17958157356238627647668224=-\,2^{14}\cdot 13^{12}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{10} - \frac{1}{20} a^{9} - \frac{1}{4} a^{7} + \frac{1}{10} a^{6} - \frac{7}{20} a^{5} - \frac{1}{10} a^{4} + \frac{7}{20} a^{3} + \frac{2}{5} a^{2} - \frac{9}{20} a - \frac{1}{2}$, $\frac{1}{44080} a^{12} - \frac{83}{5510} a^{11} + \frac{11}{760} a^{10} - \frac{1119}{22040} a^{9} + \frac{419}{4408} a^{8} - \frac{3119}{22040} a^{7} + \frac{2857}{22040} a^{6} - \frac{677}{11020} a^{5} + \frac{6323}{22040} a^{4} + \frac{5417}{22040} a^{3} + \frac{1569}{4408} a^{2} - \frac{7681}{22040} a - \frac{591}{8816}$, $\frac{1}{1987535776458246068000} a^{13} + \frac{14745846443418917}{1987535776458246068000} a^{12} - \frac{19884655870594238323}{993767888229123034000} a^{11} + \frac{594264971199369123}{5230357306469068600} a^{10} + \frac{4465041566888126239}{248441972057280758500} a^{9} + \frac{58714039780327445843}{496883944114561517000} a^{8} - \frac{22781164214019466163}{248441972057280758500} a^{7} + \frac{183556339971610262043}{993767888229123034000} a^{6} - \frac{492802200471494545421}{993767888229123034000} a^{5} + \frac{2021719697833036027}{5230357306469068600} a^{4} + \frac{195855326656815122071}{496883944114561517000} a^{3} - \frac{54056714318333038183}{496883944114561517000} a^{2} + \frac{508168173972209359103}{1987535776458246068000} a - \frac{389650517773867471}{10743436629504032800}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{46364270629}{5240700794880016} a^{13} + \frac{443506997245}{5240700794880016} a^{12} + \frac{648587239079}{2620350397440008} a^{11} + \frac{207640899336}{327543799680001} a^{10} - \frac{855707296600}{327543799680001} a^{9} + \frac{1353115476336}{327543799680001} a^{8} - \frac{24128243517651}{1310175198720004} a^{7} + \frac{265331901764527}{2620350397440008} a^{6} - \frac{213035671775979}{2620350397440008} a^{5} + \frac{348400506737829}{655087599360002} a^{4} - \frac{760872012214769}{1310175198720004} a^{3} + \frac{723275753131971}{655087599360002} a^{2} - \frac{9912717585618913}{5240700794880016} a + \frac{6317672742680273}{5240700794880016} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27147114.557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 196 |
| The 25 conjugacy class representatives for $D_7^2$ |
| Character table for $D_7^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $13$ | 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |