Normalized defining polynomial
\( x^{14} + 406 x^{12} + 56840 x^{10} + 3421768 x^{8} + 86896992 x^{6} + 842232384 x^{4} + 2838635072 x^{2} + 3056991616 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17721079003151998381007835234304=-\,2^{21}\cdot 7^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1624=2^{3}\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1624}(1,·)$, $\chi_{1624}(1009,·)$, $\chi_{1624}(393,·)$, $\chi_{1624}(125,·)$, $\chi_{1624}(13,·)$, $\chi_{1624}(237,·)$, $\chi_{1624}(1457,·)$, $\chi_{1624}(573,·)$, $\chi_{1624}(405,·)$, $\chi_{1624}(169,·)$, $\chi_{1624}(953,·)$, $\chi_{1624}(281,·)$, $\chi_{1624}(1021,·)$, $\chi_{1624}(1077,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{14} a^{2}$, $\frac{1}{14} a^{3}$, $\frac{1}{196} a^{4}$, $\frac{1}{196} a^{5}$, $\frac{1}{2744} a^{6}$, $\frac{1}{2744} a^{7}$, $\frac{1}{38416} a^{8}$, $\frac{1}{38416} a^{9}$, $\frac{1}{9143008} a^{10} - \frac{5}{653072} a^{8} + \frac{3}{46648} a^{6} - \frac{1}{833} a^{4} + \frac{1}{34} a^{2} - \frac{6}{17}$, $\frac{1}{9143008} a^{11} - \frac{5}{653072} a^{9} + \frac{3}{46648} a^{7} - \frac{1}{833} a^{5} + \frac{1}{34} a^{3} - \frac{6}{17} a$, $\frac{1}{309637108928} a^{12} - \frac{75}{22116936352} a^{10} + \frac{15347}{1579781168} a^{8} + \frac{6897}{56420756} a^{6} - \frac{12361}{8060108} a^{4} - \frac{16731}{575722} a^{2} - \frac{18212}{41123}$, $\frac{1}{309637108928} a^{13} - \frac{75}{22116936352} a^{11} + \frac{15347}{1579781168} a^{9} + \frac{6897}{56420756} a^{7} - \frac{12361}{8060108} a^{5} - \frac{16731}{575722} a^{3} - \frac{18212}{41123} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{109544}$, which has order $1752704$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-406}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.33 | $x^{14} + 4 x^{13} + 4 x^{12} + 4 x^{11} - 3 x^{10} + 4 x^{9} - 2 x^{7} - x^{6} - 2 x^{5} + 2 x^{4} - 2 x^{3} + 3 x^{2} + 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |