Normalized defining polynomial
\( x^{14} - 5 x^{13} - 265 x^{12} + 2173 x^{11} + 16962 x^{10} - 239968 x^{9} + 472092 x^{8} + 4513593 x^{7} - 24009340 x^{6} + 6620102 x^{5} + 267969411 x^{4} - 995551231 x^{3} + 1807246866 x^{2} - 1872983259 x + 1015807027 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1767034751033661210807027893768732983=-\,7^{7}\cdot 337^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $388.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2359=7\cdot 337\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2359}(512,·)$, $\chi_{2359}(1,·)$, $\chi_{2359}(295,·)$, $\chi_{2359}(8,·)$, $\chi_{2359}(1737,·)$, $\chi_{2359}(1063,·)$, $\chi_{2359}(64,·)$, $\chi_{2359}(1427,·)$, $\chi_{2359}(2101,·)$, $\chi_{2359}(1749,·)$, $\chi_{2359}(1686,·)$, $\chi_{2359}(1980,·)$, $\chi_{2359}(1693,·)$, $\chi_{2359}(2197,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{328261781} a^{12} - \frac{47270060}{328261781} a^{11} + \frac{125457172}{328261781} a^{10} + \frac{124763220}{328261781} a^{9} + \frac{54463744}{328261781} a^{8} + \frac{87916992}{328261781} a^{7} - \frac{128018647}{328261781} a^{6} + \frac{26580228}{328261781} a^{5} + \frac{83014523}{328261781} a^{4} - \frac{100819341}{328261781} a^{3} + \frac{74266140}{328261781} a^{2} + \frac{161597073}{328261781} a + \frac{145133361}{328261781}$, $\frac{1}{584491049559809924206514618994116225379837559} a^{13} - \frac{519550099647716992010855664751112243}{584491049559809924206514618994116225379837559} a^{12} + \frac{150742095121769570739933210892204433248486163}{584491049559809924206514618994116225379837559} a^{11} - \frac{13385092329343758599339508105710068948523306}{584491049559809924206514618994116225379837559} a^{10} + \frac{131381800131383790729058039278577373354439872}{584491049559809924206514618994116225379837559} a^{9} - \frac{2539343477250421704137494324293899818210571}{9906627958640846172991773203290105514912501} a^{8} - \frac{50204776302343727167113288334672123851433232}{584491049559809924206514618994116225379837559} a^{7} - \frac{235535148837464450655981946459770665313515063}{584491049559809924206514618994116225379837559} a^{6} - \frac{76868521219757028665013400241289889107376694}{584491049559809924206514618994116225379837559} a^{5} + \frac{37681459930735033057207366525965095575972212}{584491049559809924206514618994116225379837559} a^{4} + \frac{246814894624822153021376929069512465262290994}{584491049559809924206514618994116225379837559} a^{3} + \frac{44709084191292372516600245967647936995011294}{584491049559809924206514618994116225379837559} a^{2} + \frac{237825346637907693318023268729709025847093281}{584491049559809924206514618994116225379837559} a + \frac{69960238765952584524846397405230318596414696}{584491049559809924206514618994116225379837559}$
Class group and class number
$C_{7}\times C_{21371}$, which has order $149597$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5486180.267403393 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.1464803622199009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 337 | Data not computed | ||||||