Normalized defining polynomial
\( x^{14} - x^{13} + 103 x^{12} - 104 x^{11} + 3546 x^{10} - 3651 x^{9} + 50063 x^{8} - 69132 x^{7} + 283946 x^{6} - 695198 x^{5} + 1099322 x^{4} - 1801888 x^{3} + 5495644 x^{2} - 5241351 x + 3832639 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1753124609003161170886171875=-\,3^{7}\cdot 5^{7}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(435=3\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{435}(256,·)$, $\chi_{435}(1,·)$, $\chi_{435}(226,·)$, $\chi_{435}(419,·)$, $\chi_{435}(136,·)$, $\chi_{435}(299,·)$, $\chi_{435}(16,·)$, $\chi_{435}(209,·)$, $\chi_{435}(434,·)$, $\chi_{435}(179,·)$, $\chi_{435}(149,·)$, $\chi_{435}(286,·)$, $\chi_{435}(254,·)$, $\chi_{435}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{389} a^{12} + \frac{194}{389} a^{11} - \frac{87}{389} a^{10} - \frac{4}{389} a^{9} + \frac{116}{389} a^{8} - \frac{111}{389} a^{7} + \frac{183}{389} a^{6} - \frac{34}{389} a^{5} - \frac{47}{389} a^{4} + \frac{149}{389} a^{3} + \frac{151}{389} a^{2} - \frac{132}{389} a + \frac{17}{389}$, $\frac{1}{385966054973843044100668475176334603530619} a^{13} + \frac{198930711274255779348144515478883878417}{385966054973843044100668475176334603530619} a^{12} - \frac{173301320146143312480869537474343316995153}{385966054973843044100668475176334603530619} a^{11} - \frac{101680277031260824070602353248872638864043}{385966054973843044100668475176334603530619} a^{10} - \frac{175123274834820584259645725248528740863631}{385966054973843044100668475176334603530619} a^{9} - \frac{118054098557022703825319027652847517406589}{385966054973843044100668475176334603530619} a^{8} - \frac{98667754647322045551244778807503442176601}{385966054973843044100668475176334603530619} a^{7} - \frac{4662470437590699067209430472831489071880}{9413806218874220587821182321374014720259} a^{6} + \frac{10840268652883345740901870049997881124832}{385966054973843044100668475176334603530619} a^{5} + \frac{55077561553031651417220558926417478683609}{385966054973843044100668475176334603530619} a^{4} + \frac{111080832941249359772416929559409567023090}{385966054973843044100668475176334603530619} a^{3} + \frac{91942558836099944507929628328511913048914}{385966054973843044100668475176334603530619} a^{2} - \frac{158535262321230753216570906262250712159910}{385966054973843044100668475176334603530619} a + \frac{2243196992003415395258201079128148343880}{9413806218874220587821182321374014720259}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{116}$, which has order $7424$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-435}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | R | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |