Normalized defining polynomial
\( x^{14} - x^{13} + 132 x^{12} + 180 x^{11} + 1915 x^{10} + 2085 x^{9} + 26433 x^{8} + 55438 x^{7} + 760329 x^{6} + 1125862 x^{5} + 3273901 x^{4} + 12466019 x^{3} + 29806445 x^{2} + 33909513 x + 17221049 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-174678077231252895510919809921875=-\,5^{7}\cdot 127^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(635=5\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{635}(256,·)$, $\chi_{635}(1,·)$, $\chi_{635}(131,·)$, $\chi_{635}(516,·)$, $\chi_{635}(619,·)$, $\chi_{635}(16,·)$, $\chi_{635}(119,·)$, $\chi_{635}(504,·)$, $\chi_{635}(634,·)$, $\chi_{635}(379,·)$, $\chi_{635}(444,·)$, $\chi_{635}(349,·)$, $\chi_{635}(286,·)$, $\chi_{635}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{19} a^{8} + \frac{9}{19} a^{7} - \frac{8}{19} a^{6} + \frac{5}{19} a^{5} - \frac{8}{19} a^{4} + \frac{7}{19} a^{3} - \frac{9}{19} a^{2} + \frac{1}{19} a$, $\frac{1}{19} a^{9} + \frac{6}{19} a^{7} + \frac{1}{19} a^{6} + \frac{4}{19} a^{5} + \frac{3}{19} a^{4} + \frac{4}{19} a^{3} + \frac{6}{19} a^{2} - \frac{9}{19} a$, $\frac{1}{19} a^{10} + \frac{4}{19} a^{7} - \frac{5}{19} a^{6} - \frac{8}{19} a^{5} - \frac{5}{19} a^{4} + \frac{2}{19} a^{3} + \frac{7}{19} a^{2} - \frac{6}{19} a$, $\frac{1}{19} a^{11} - \frac{3}{19} a^{7} + \frac{5}{19} a^{6} - \frac{6}{19} a^{5} - \frac{4}{19} a^{4} - \frac{2}{19} a^{3} - \frac{8}{19} a^{2} - \frac{4}{19} a$, $\frac{1}{549803} a^{12} + \frac{3443}{549803} a^{11} + \frac{5884}{549803} a^{10} + \frac{13331}{549803} a^{9} - \frac{14139}{549803} a^{8} + \frac{102223}{549803} a^{7} + \frac{100319}{549803} a^{6} - \frac{249934}{549803} a^{5} + \frac{199339}{549803} a^{4} + \frac{28748}{549803} a^{3} + \frac{79186}{549803} a^{2} - \frac{161664}{549803} a - \frac{6692}{28937}$, $\frac{1}{275687328296854770669614616247135432657} a^{13} - \frac{114955326355545554699089877007823}{275687328296854770669614616247135432657} a^{12} + \frac{5994825703591747441239651972069756103}{275687328296854770669614616247135432657} a^{11} - \frac{3889253728322008109727884748548637985}{275687328296854770669614616247135432657} a^{10} + \frac{428136295980170037428391157249283600}{275687328296854770669614616247135432657} a^{9} - \frac{6745016312182377896227917032895659972}{275687328296854770669614616247135432657} a^{8} + \frac{1832974538357070051924227685456857401}{275687328296854770669614616247135432657} a^{7} + \frac{38250927821056761473894590755607101930}{275687328296854770669614616247135432657} a^{6} - \frac{27475376661811909472852500907413467861}{275687328296854770669614616247135432657} a^{5} - \frac{121619487055136809307793542744696539615}{275687328296854770669614616247135432657} a^{4} + \frac{33108946122071831950848083464210788585}{275687328296854770669614616247135432657} a^{3} - \frac{52026580196974519725542532237933487158}{275687328296854770669614616247135432657} a^{2} + \frac{84127003087138110524528188882009422696}{275687328296854770669614616247135432657} a + \frac{4994424999823464613249580801304903148}{14509859384044987929979716644586075403}$
Class group and class number
$C_{31370}$, which has order $31370$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 546287.2103473756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-635}) \), 7.7.4195872914689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $127$ | 127.14.13.1 | $x^{14} - 127$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |