Properties

Label 14.0.17293766349...2111.1
Degree $14$
Signature $[0, 7]$
Discriminant $-\,29^{7}\cdot 139^{7}$
Root discriminant $63.49$
Ramified primes $29, 139$
Class number $12$ (GRH)
Class group $[12]$ (GRH)
Galois group $D_{7}$ (as 14T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4031, 0, -470, 0, 1529, 0, -553, 0, 447, 0, -82, 0, 28, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^14 + 28*x^12 - 82*x^10 + 447*x^8 - 553*x^6 + 1529*x^4 - 470*x^2 + 4031)
 
gp: K = bnfinit(x^14 + 28*x^12 - 82*x^10 + 447*x^8 - 553*x^6 + 1529*x^4 - 470*x^2 + 4031, 1)
 

Normalized defining polynomial

\( x^{14} + 28 x^{12} - 82 x^{10} + 447 x^{8} - 553 x^{6} + 1529 x^{4} - 470 x^{2} + 4031 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $14$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-17293766349691312351682111=-\,29^{7}\cdot 139^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $63.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $29, 139$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{638} a^{10} - \frac{67}{638} a^{8} + \frac{293}{638} a^{6} + \frac{37}{319} a^{4} - \frac{1}{2} a^{3} + \frac{141}{638} a^{2} - \frac{1}{2} a + \frac{3}{22}$, $\frac{1}{638} a^{11} - \frac{67}{638} a^{9} - \frac{13}{319} a^{7} + \frac{37}{319} a^{5} - \frac{89}{319} a^{3} + \frac{3}{22} a - \frac{1}{2}$, $\frac{1}{328571914} a^{12} - \frac{167}{5665033} a^{10} + \frac{35714795}{164285957} a^{8} - \frac{47785171}{328571914} a^{6} - \frac{1}{2} a^{5} - \frac{154944337}{328571914} a^{4} + \frac{968228}{4440161} a^{2} - \frac{1}{2} a - \frac{5361195}{11330066}$, $\frac{1}{328571914} a^{13} - \frac{167}{5665033} a^{11} + \frac{35714795}{164285957} a^{9} - \frac{47785171}{328571914} a^{7} - \frac{1}{2} a^{6} - \frac{154944337}{328571914} a^{5} + \frac{968228}{4440161} a^{3} - \frac{1}{2} a^{2} - \frac{5361195}{11330066} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{12}$, which has order $12$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 309074.552202 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_7$ (as 14T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 14
The 5 conjugacy class representatives for $D_{7}$
Character table for $D_{7}$

Intermediate fields

\(\Q(\sqrt{-4031}) \), 7.1.65499561791.1 x7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 7 sibling: 7.1.65499561791.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ R ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$29$29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
$139$139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$
139.2.1.2$x^{2} + 556$$2$$1$$1$$C_2$$[\ ]_{2}$