Normalized defining polynomial
\( x^{14} - 7 x^{13} + 70 x^{12} - 287 x^{11} + 2506 x^{10} - 10829 x^{9} + 80535 x^{8} - 312301 x^{7} + 1803081 x^{6} - 5829124 x^{5} + 25808202 x^{4} - 61248166 x^{3} + 206001411 x^{2} - 296315320 x + 704858827 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-171927042716763378495925978132251=-\,3^{7}\cdot 7^{24}\cdot 17^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2499=3\cdot 7^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2499}(1,·)$, $\chi_{2499}(715,·)$, $\chi_{2499}(1478,·)$, $\chi_{2499}(358,·)$, $\chi_{2499}(1121,·)$, $\chi_{2499}(1835,·)$, $\chi_{2499}(2192,·)$, $\chi_{2499}(50,·)$, $\chi_{2499}(1429,·)$, $\chi_{2499}(407,·)$, $\chi_{2499}(1072,·)$, $\chi_{2499}(764,·)$, $\chi_{2499}(1786,·)$, $\chi_{2499}(2143,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} - \frac{6}{19} a^{9} + \frac{6}{19} a^{8} + \frac{3}{19} a^{7} - \frac{2}{19} a^{6} - \frac{2}{19} a^{5} + \frac{5}{19} a^{4} + \frac{1}{19} a^{3} - \frac{7}{19} a^{2} - \frac{3}{19} a$, $\frac{1}{19} a^{11} + \frac{8}{19} a^{9} + \frac{1}{19} a^{8} - \frac{3}{19} a^{7} + \frac{5}{19} a^{6} - \frac{7}{19} a^{5} - \frac{7}{19} a^{4} - \frac{1}{19} a^{3} - \frac{7}{19} a^{2} + \frac{1}{19} a$, $\frac{1}{589} a^{12} + \frac{12}{589} a^{11} + \frac{9}{589} a^{10} + \frac{167}{589} a^{9} - \frac{270}{589} a^{8} + \frac{10}{589} a^{7} - \frac{120}{589} a^{6} - \frac{3}{19} a^{5} + \frac{205}{589} a^{4} + \frac{229}{589} a^{3} - \frac{128}{589} a^{2} - \frac{143}{589} a + \frac{4}{31}$, $\frac{1}{116788442723601437805333619931555213359} a^{13} - \frac{33214378038735399352898473458458743}{116788442723601437805333619931555213359} a^{12} - \frac{1062800006457773774502595137428494668}{116788442723601437805333619931555213359} a^{11} + \frac{746713395518820730383253522178416843}{116788442723601437805333619931555213359} a^{10} + \frac{39207527425599865959635214563072652085}{116788442723601437805333619931555213359} a^{9} + \frac{333793897385007022583575956998839220}{116788442723601437805333619931555213359} a^{8} + \frac{757396884309326587391156158698564120}{1743111085426887131422889849724704677} a^{7} - \frac{7677160089413623789172700057108592272}{116788442723601437805333619931555213359} a^{6} + \frac{52865377880265461094482305581782195682}{116788442723601437805333619931555213359} a^{5} + \frac{55568826942608631613211807277042507981}{116788442723601437805333619931555213359} a^{4} + \frac{26000372051739994761082728952888063975}{116788442723601437805333619931555213359} a^{3} - \frac{44815880717578802386631539503801890974}{116788442723601437805333619931555213359} a^{2} - \frac{46128248283477226618152294870618745977}{116788442723601437805333619931555213359} a - \frac{35406546574048041887850191009293370}{91742688706678270074888939459194983}$
Class group and class number
$C_{513914}$, which has order $513914$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.24.53 | $x^{14} + 931 x^{13} + 2310 x^{12} + 903 x^{11} + 392 x^{10} + 2198 x^{9} + 2296 x^{8} + 1485 x^{7} + 637 x^{6} + 1295 x^{5} + 2303 x^{4} + 1449 x^{3} + 1316 x^{2} + 2219 x + 2383$ | $7$ | $2$ | $24$ | $C_{14}$ | $[2]^{2}$ |
| $17$ | 17.14.7.2 | $x^{14} - 24137569 x^{2} + 1231016019$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |