Normalized defining polynomial
\( x^{14} - x^{13} + 2 x^{12} + 24 x^{11} - 17 x^{10} + 27 x^{9} + 143 x^{8} - 81 x^{7} + 83 x^{6} + 209 x^{5} + 163 x^{4} - 88 x^{3} + 235 x^{2} + 168 x + 79 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1718264124282290785243=-\,43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{43}(32,·)$, $\chi_{43}(1,·)$, $\chi_{43}(2,·)$, $\chi_{43}(35,·)$, $\chi_{43}(4,·)$, $\chi_{43}(39,·)$, $\chi_{43}(8,·)$, $\chi_{43}(41,·)$, $\chi_{43}(42,·)$, $\chi_{43}(11,·)$, $\chi_{43}(16,·)$, $\chi_{43}(21,·)$, $\chi_{43}(22,·)$, $\chi_{43}(27,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{1744091421023249} a^{13} - \frac{82745671581626}{1744091421023249} a^{12} + \frac{261033923067570}{1744091421023249} a^{11} - \frac{29742838523662}{1744091421023249} a^{10} - \frac{503373242554238}{1744091421023249} a^{9} - \frac{604666142846306}{1744091421023249} a^{8} + \frac{818185152193630}{1744091421023249} a^{7} - \frac{489128085838790}{1744091421023249} a^{6} - \frac{324999217303861}{1744091421023249} a^{5} + \frac{84751421131921}{1744091421023249} a^{4} + \frac{312328981522648}{1744091421023249} a^{3} - \frac{584290881634991}{1744091421023249} a^{2} + \frac{215291569885636}{1744091421023249} a + \frac{9602647480904}{22077106595231}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.6418506 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.14.13.11 | $x^{14} + 205667667$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |