Normalized defining polynomial
\( x^{14} - 7 x^{13} + 14 x^{12} - 35 x^{11} + 448 x^{10} - 987 x^{9} + 3269 x^{8} - 5165 x^{7} + 50239 x^{6} - 15162 x^{5} + 290430 x^{4} + 126 x^{3} + 1882601 x^{2} + 1399160 x + 5746151 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-171249048453908271645616513339=-\,7^{24}\cdot 19^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(931=7^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{931}(512,·)$, $\chi_{931}(1,·)$, $\chi_{931}(645,·)$, $\chi_{931}(134,·)$, $\chi_{931}(778,·)$, $\chi_{931}(267,·)$, $\chi_{931}(911,·)$, $\chi_{931}(400,·)$, $\chi_{931}(113,·)$, $\chi_{931}(533,·)$, $\chi_{931}(246,·)$, $\chi_{931}(666,·)$, $\chi_{931}(379,·)$, $\chi_{931}(799,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{589} a^{12} - \frac{117}{589} a^{11} + \frac{283}{589} a^{10} + \frac{102}{589} a^{9} + \frac{142}{589} a^{8} - \frac{219}{589} a^{7} - \frac{284}{589} a^{6} - \frac{276}{589} a^{5} - \frac{174}{589} a^{4} + \frac{275}{589} a^{3} + \frac{158}{589} a^{2} + \frac{12}{31} a + \frac{14}{31}$, $\frac{1}{7143651410261227570763450186434727} a^{13} + \frac{4307334855886101817694671133436}{7143651410261227570763450186434727} a^{12} + \frac{1718733965783239411604222713757575}{7143651410261227570763450186434727} a^{11} - \frac{2188658915205361932006837437652349}{7143651410261227570763450186434727} a^{10} + \frac{3422295047133238157474167765455372}{7143651410261227570763450186434727} a^{9} - \frac{285538137919108621354636523993247}{7143651410261227570763450186434727} a^{8} + \frac{594331784527807444858397990850880}{7143651410261227570763450186434727} a^{7} - \frac{1896735610943177146573129383252058}{7143651410261227570763450186434727} a^{6} + \frac{2231039655211338800763449318620147}{7143651410261227570763450186434727} a^{5} - \frac{761846555509957677334422305070390}{7143651410261227570763450186434727} a^{4} - \frac{3394178260341053206234068570775989}{7143651410261227570763450186434727} a^{3} - \frac{474481290281817088317478774968300}{7143651410261227570763450186434727} a^{2} - \frac{87406940049951799003185557748245}{375981653171643556355971062443933} a - \frac{131441830667989327441490276803379}{375981653171643556355971062443933}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{406}$, which has order $12992$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35256.68973693789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |