Normalized defining polynomial
\( x^{14} - x^{13} + 91 x^{12} + 228 x^{11} + 6725 x^{10} + 8698 x^{9} + 111679 x^{8} - 102522 x^{7} + 1215344 x^{6} - 1305976 x^{5} + 7192317 x^{4} - 11528880 x^{3} + 28130213 x^{2} - 24476087 x + 21743569 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17030925399469881272195784585627=-\,3^{7}\cdot 211^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(633=3\cdot 211\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{633}(1,·)$, $\chi_{633}(355,·)$, $\chi_{633}(359,·)$, $\chi_{633}(199,·)$, $\chi_{633}(269,·)$, $\chi_{633}(334,·)$, $\chi_{633}(593,·)$, $\chi_{633}(148,·)$, $\chi_{633}(545,·)$, $\chi_{633}(566,·)$, $\chi_{633}(212,·)$, $\chi_{633}(58,·)$, $\chi_{633}(410,·)$, $\chi_{633}(382,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{3}{19} a^{8} + \frac{4}{19} a^{7} + \frac{1}{19} a^{5} + \frac{7}{19} a^{4} - \frac{9}{19} a^{3} + \frac{4}{19} a^{2} + \frac{3}{19} a - \frac{8}{19}$, $\frac{1}{19} a^{10} - \frac{5}{19} a^{8} - \frac{7}{19} a^{7} + \frac{1}{19} a^{6} - \frac{9}{19} a^{5} - \frac{7}{19} a^{4} - \frac{4}{19} a^{3} - \frac{4}{19} a^{2} + \frac{1}{19} a - \frac{5}{19}$, $\frac{1}{19} a^{11} - \frac{3}{19} a^{8} + \frac{2}{19} a^{7} - \frac{9}{19} a^{6} - \frac{2}{19} a^{5} - \frac{7}{19} a^{4} + \frac{8}{19} a^{3} + \frac{2}{19} a^{2} - \frac{9}{19} a - \frac{2}{19}$, $\frac{1}{69388171} a^{12} - \frac{219325}{69388171} a^{11} - \frac{977965}{69388171} a^{10} + \frac{606946}{69388171} a^{9} - \frac{17610900}{69388171} a^{8} - \frac{27712938}{69388171} a^{7} - \frac{24170606}{69388171} a^{6} + \frac{34010869}{69388171} a^{5} - \frac{5556055}{69388171} a^{4} + \frac{13653399}{69388171} a^{3} - \frac{5345008}{69388171} a^{2} - \frac{12088201}{69388171} a - \frac{5982177}{69388171}$, $\frac{1}{46955808285802910919222505146990615949} a^{13} + \frac{113386930799887453961976310945}{46955808285802910919222505146990615949} a^{12} - \frac{333260248814170972640369791363854032}{46955808285802910919222505146990615949} a^{11} - \frac{1097452646732781877906943258042578227}{46955808285802910919222505146990615949} a^{10} + \frac{798756681558497730200333894646301112}{46955808285802910919222505146990615949} a^{9} - \frac{10031560517005284044267247703875739557}{46955808285802910919222505146990615949} a^{8} - \frac{983897040919763418794489155395646865}{46955808285802910919222505146990615949} a^{7} + \frac{6674402545059493277146959401197776248}{46955808285802910919222505146990615949} a^{6} + \frac{7177685452389081708175477044447815867}{46955808285802910919222505146990615949} a^{5} + \frac{1745727116249880616439378628491968231}{46955808285802910919222505146990615949} a^{4} + \frac{44775502726242667237440994683807165}{2041556881991430909531413267260461563} a^{3} - \frac{22743273332831553004337807085440324727}{46955808285802910919222505146990615949} a^{2} + \frac{524618243794656932279878850826786192}{2041556881991430909531413267260461563} a + \frac{2284549734185663109815601404183646}{10069870959854795393356745688824923}$
Class group and class number
$C_{29}\times C_{203}$, which has order $5887$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{31993851055684142285271528}{784309213212228547649409630142321} a^{13} - \frac{42040344115927508344408370}{784309213212228547649409630142321} a^{12} + \frac{2938541043200525724682668992}{784309213212228547649409630142321} a^{11} + \frac{6515119069452645596048131735}{784309213212228547649409630142321} a^{10} + \frac{214114835999124985705040735123}{784309213212228547649409630142321} a^{9} + \frac{228033937717734967775625825611}{784309213212228547649409630142321} a^{8} + \frac{3623363037471507076993492127932}{784309213212228547649409630142321} a^{7} - \frac{3310181147883456235723728300859}{784309213212228547649409630142321} a^{6} + \frac{42122633133230728073594548691234}{784309213212228547649409630142321} a^{5} - \frac{42672980441024604833679486440082}{784309213212228547649409630142321} a^{4} + \frac{239405087284394175164376908232427}{784309213212228547649409630142321} a^{3} - \frac{254854610753148938715693839860515}{784309213212228547649409630142321} a^{2} + \frac{947730491330493086351134545958921}{784309213212228547649409630142321} a - \frac{9176854698999162430479248428}{168198415872234301447439337367} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2943138.716633699 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 7.7.88245939632761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 211 | Data not computed | ||||||