Normalized defining polynomial
\( x^{14} - 4 x^{13} + 44 x^{12} - 131 x^{11} + 223 x^{10} - 2372 x^{9} - 1828 x^{8} + 4867 x^{7} + 79816 x^{6} + 233126 x^{5} + 1093209 x^{4} + 1284789 x^{3} - 851090 x^{2} - 4392150 x + 4773375 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1692934919397644000811644719=-\,7759^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7759$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{15} a^{8} - \frac{1}{15} a^{7} + \frac{1}{15} a^{6} - \frac{1}{15} a^{5} + \frac{4}{15} a^{4} - \frac{4}{15} a^{3} + \frac{4}{15} a^{2} - \frac{4}{15} a$, $\frac{1}{75} a^{9} + \frac{2}{75} a^{8} + \frac{4}{75} a^{7} - \frac{7}{75} a^{6} + \frac{4}{75} a^{5} + \frac{23}{75} a^{4} - \frac{29}{75} a^{3} + \frac{32}{75} a^{2} - \frac{2}{5} a$, $\frac{1}{75} a^{10} + \frac{1}{25} a^{6} - \frac{4}{75} a^{2}$, $\frac{1}{75} a^{11} + \frac{1}{25} a^{7} - \frac{4}{75} a^{3}$, $\frac{1}{88875} a^{12} - \frac{7}{5925} a^{11} + \frac{98}{29625} a^{10} + \frac{86}{17775} a^{9} + \frac{1718}{88875} a^{8} + \frac{1436}{17775} a^{7} + \frac{3467}{88875} a^{6} + \frac{929}{17775} a^{5} + \frac{26581}{88875} a^{4} + \frac{278}{711} a^{3} - \frac{22036}{88875} a^{2} - \frac{89}{395} a - \frac{164}{395}$, $\frac{1}{9491972496215048118683035417125} a^{13} - \frac{1626975831588496223055089}{1898394499243009623736607083425} a^{12} + \frac{6908625552600524330895243778}{3163990832071682706227678472375} a^{11} + \frac{1857268230119320340702377397}{1898394499243009623736607083425} a^{10} - \frac{22548891308789681365248020147}{9491972496215048118683035417125} a^{9} + \frac{468841817476287073237683859}{24030310117000121819450722575} a^{8} + \frac{14970099050914237111671721552}{9491972496215048118683035417125} a^{7} - \frac{85210371165172834254937480772}{1898394499243009623736607083425} a^{6} - \frac{99604190512180584076221298506}{1054663610690560902075892824125} a^{5} - \frac{68719918726577354137329284623}{210932722138112180415178564825} a^{4} + \frac{3225664378677471667738862135464}{9491972496215048118683035417125} a^{3} - \frac{99772606101261828223020543668}{379678899848601924747321416685} a^{2} + \frac{30414093372137946750590199433}{126559633282867308249107138895} a + \frac{25930995074620850959559012}{8437308885524487216607142593}$
Class group and class number
$C_{29}\times C_{203}$, which has order $5887$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 255747.453243 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-7759}) \), 7.1.467107946479.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.467107946479.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7759 | Data not computed | ||||||