Normalized defining polynomial
\( x^{14} - x^{13} + 8 x^{12} + 58 x^{11} - 1089 x^{10} - 1653 x^{9} + 22837 x^{8} + 60342 x^{7} - 23157 x^{6} - 53486 x^{5} + 434837 x^{4} + 473241 x^{3} - 217661 x^{2} + 293289 x + 715937 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1643129976812137607879885938531=-\,211^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(211\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{211}(1,·)$, $\chi_{211}(67,·)$, $\chi_{211}(199,·)$, $\chi_{211}(40,·)$, $\chi_{211}(171,·)$, $\chi_{211}(12,·)$, $\chi_{211}(144,·)$, $\chi_{211}(210,·)$, $\chi_{211}(148,·)$, $\chi_{211}(88,·)$, $\chi_{211}(153,·)$, $\chi_{211}(58,·)$, $\chi_{211}(123,·)$, $\chi_{211}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{19} a^{8} + \frac{3}{19} a^{7} + \frac{8}{19} a^{6} + \frac{4}{19} a^{5} - \frac{1}{19} a^{4} + \frac{7}{19} a^{3} - \frac{8}{19} a^{2} + \frac{3}{19} a - \frac{2}{19}$, $\frac{1}{19} a^{9} - \frac{1}{19} a^{7} - \frac{1}{19} a^{6} + \frac{6}{19} a^{5} - \frac{9}{19} a^{4} + \frac{9}{19} a^{3} + \frac{8}{19} a^{2} + \frac{8}{19} a + \frac{6}{19}$, $\frac{1}{19} a^{10} + \frac{2}{19} a^{7} - \frac{5}{19} a^{6} - \frac{5}{19} a^{5} + \frac{8}{19} a^{4} - \frac{4}{19} a^{3} + \frac{9}{19} a - \frac{2}{19}$, $\frac{1}{361} a^{11} - \frac{9}{361} a^{10} + \frac{8}{361} a^{9} + \frac{8}{361} a^{8} - \frac{89}{361} a^{7} - \frac{15}{361} a^{6} - \frac{179}{361} a^{5} + \frac{112}{361} a^{4} + \frac{74}{361} a^{3} - \frac{127}{361} a^{2} - \frac{115}{361} a + \frac{92}{361}$, $\frac{1}{60914779} a^{12} - \frac{4005}{3206041} a^{11} + \frac{522864}{60914779} a^{10} - \frac{1140718}{60914779} a^{9} - \frac{1492182}{60914779} a^{8} + \frac{1285}{6859} a^{7} - \frac{29546207}{60914779} a^{6} + \frac{21134975}{60914779} a^{5} + \frac{5133628}{60914779} a^{4} - \frac{3850}{60914779} a^{3} + \frac{25704393}{60914779} a^{2} + \frac{29750663}{60914779} a + \frac{89559}{569297}$, $\frac{1}{44618670312913621594677331} a^{13} + \frac{274137764829395863}{44618670312913621594677331} a^{12} - \frac{10414751691013600536527}{44618670312913621594677331} a^{11} - \frac{566028329251178504598215}{44618670312913621594677331} a^{10} + \frac{7190828353416866190709}{2348351069100716926035649} a^{9} + \frac{56843754348439867204708}{2348351069100716926035649} a^{8} + \frac{12891722822888503159285711}{44618670312913621594677331} a^{7} + \frac{5998243466674080392005854}{44618670312913621594677331} a^{6} - \frac{10712673188382857590166722}{44618670312913621594677331} a^{5} + \frac{1594305983395314882844732}{44618670312913621594677331} a^{4} + \frac{17873620607335910436327878}{44618670312913621594677331} a^{3} - \frac{10183711233703727448686043}{44618670312913621594677331} a^{2} + \frac{11214597295333115782099605}{44618670312913621594677331} a - \frac{113443063743872363472247}{416996918812276837333433}$
Class group and class number
$C_{843}$, which has order $843$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2943138.71663 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-211}) \), 7.7.88245939632761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 211 | Data not computed | ||||||