Normalized defining polynomial
\( x^{14} - 2 x^{13} + 19 x^{12} - 34 x^{11} + 402 x^{10} - 528 x^{9} + 6227 x^{8} - 4968 x^{7} + 67046 x^{6} - 36022 x^{5} + 492458 x^{4} - 218804 x^{3} + 2200477 x^{2} - 533070 x + 4387351 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1622761392560638877063184384=-\,2^{21}\cdot 3^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(696=2^{3}\cdot 3\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{696}(1,·)$, $\chi_{696}(197,·)$, $\chi_{696}(529,·)$, $\chi_{696}(169,·)$, $\chi_{696}(581,·)$, $\chi_{696}(413,·)$, $\chi_{696}(49,·)$, $\chi_{696}(25,·)$, $\chi_{696}(629,·)$, $\chi_{696}(625,·)$, $\chi_{696}(313,·)$, $\chi_{696}(509,·)$, $\chi_{696}(605,·)$, $\chi_{696}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} + \frac{4}{17} a^{11} - \frac{6}{17} a^{10} + \frac{6}{17} a^{9} + \frac{1}{17} a^{8} + \frac{7}{17} a^{6} + \frac{4}{17} a^{5} + \frac{2}{17} a^{4} + \frac{4}{17} a^{3} - \frac{4}{17} a^{2} + \frac{4}{17} a - \frac{4}{17}$, $\frac{1}{419988929819654430499338688778897} a^{13} - \frac{10043643114432151418746863289560}{419988929819654430499338688778897} a^{12} - \frac{64824155734448411270109495882359}{419988929819654430499338688778897} a^{11} - \frac{173717908008986785025067021030757}{419988929819654430499338688778897} a^{10} + \frac{177968809396149124629242886508945}{419988929819654430499338688778897} a^{9} + \frac{70016859701505110226917440319743}{419988929819654430499338688778897} a^{8} - \frac{153012262790381439469749721579415}{419988929819654430499338688778897} a^{7} - \frac{6262791489640752509304396260279}{419988929819654430499338688778897} a^{6} - \frac{75774091381063508508935237272887}{419988929819654430499338688778897} a^{5} - \frac{45290027157849178422798995683969}{419988929819654430499338688778897} a^{4} - \frac{183119741187524629430307695873674}{419988929819654430499338688778897} a^{3} + \frac{206858777878910591641707034538147}{419988929819654430499338688778897} a^{2} + \frac{185976786353810990929008783202027}{419988929819654430499338688778897} a - \frac{140352514631919683556854967644833}{419988929819654430499338688778897}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{602}$, which has order $4816$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.33 | $x^{14} + 4 x^{13} + 4 x^{12} + 4 x^{11} - 3 x^{10} + 4 x^{9} - 2 x^{7} - x^{6} - 2 x^{5} + 2 x^{4} - 2 x^{3} + 3 x^{2} + 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |