Normalized defining polynomial
\( x^{14} - 4 x^{13} - 56 x^{11} + 122 x^{10} + 672 x^{9} - 536 x^{8} - 376 x^{7} - 14255 x^{6} + 15828 x^{5} + 237656 x^{4} - 710096 x^{3} + 745620 x^{2} - 384880 x + 270304 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16043017139485116019720192=-\,2^{14}\cdot 997^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 997$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{12} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{24} a^{8} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{3}$, $\frac{1}{240} a^{9} + \frac{1}{120} a^{7} - \frac{7}{60} a^{6} - \frac{13}{240} a^{5} + \frac{7}{30} a^{4} + \frac{49}{120} a^{3} + \frac{17}{60} a^{2} + \frac{11}{30} a - \frac{7}{15}$, $\frac{1}{240} a^{10} + \frac{1}{120} a^{8} - \frac{1}{30} a^{7} + \frac{7}{240} a^{6} - \frac{11}{60} a^{5} - \frac{1}{120} a^{4} + \frac{7}{60} a^{3} + \frac{1}{5} a^{2} - \frac{2}{15} a + \frac{1}{3}$, $\frac{1}{240} a^{11} + \frac{1}{120} a^{8} + \frac{1}{80} a^{7} + \frac{1}{20} a^{6} - \frac{3}{20} a^{5} + \frac{1}{40} a^{4} + \frac{2}{15} a^{3} + \frac{1}{20} a^{2} - \frac{2}{5} a + \frac{4}{15}$, $\frac{1}{2400} a^{12} - \frac{1}{1200} a^{11} - \frac{1}{480} a^{10} - \frac{1}{600} a^{9} - \frac{1}{2400} a^{8} - \frac{23}{1200} a^{7} - \frac{247}{2400} a^{6} - \frac{31}{600} a^{5} - \frac{13}{75} a^{4} + \frac{1}{6} a^{3} + \frac{163}{600} a^{2} + \frac{21}{50} a + \frac{4}{25}$, $\frac{1}{944110585973087762784000} a^{13} - \frac{150285896305053172223}{944110585973087762784000} a^{12} + \frac{1834253223165864964037}{944110585973087762784000} a^{11} - \frac{1250469519027867902159}{944110585973087762784000} a^{10} - \frac{1402509453419552078257}{944110585973087762784000} a^{9} - \frac{12674552961135325249}{188822117194617552556800} a^{8} + \frac{4112961148704544146319}{944110585973087762784000} a^{7} + \frac{60135622811063429414563}{944110585973087762784000} a^{6} + \frac{1362004866909177920913}{9834485270552997529000} a^{5} - \frac{14046916259705712339357}{78675882164423980232000} a^{4} - \frac{116651264371326848248237}{236027646493271940696000} a^{3} - \frac{39117481672943546016207}{78675882164423980232000} a^{2} - \frac{24709378739088051828499}{59006911623317985174000} a + \frac{3376265903371094983271}{9834485270552997529000}$
Class group and class number
$C_{13}\times C_{26}$, which has order $338$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2568027.22257 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-997}) \), 7.1.63425726272.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.63425726272.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 997 | Data not computed | ||||||