Normalized defining polynomial
\( x^{14} + 497 x^{12} + 76538 x^{10} + 4554011 x^{8} + 125807598 x^{6} + 1668229206 x^{4} + 9681218561 x^{2} + 16898278817 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15720442004808735820984528834936832=-\,2^{14}\cdot 7^{7}\cdot 71^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $277.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1988=2^{2}\cdot 7\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1988}(897,·)$, $\chi_{1988}(1091,·)$, $\chi_{1988}(1,·)$, $\chi_{1988}(1035,·)$, $\chi_{1988}(813,·)$, $\chi_{1988}(335,·)$, $\chi_{1988}(531,·)$, $\chi_{1988}(1681,·)$, $\chi_{1988}(307,·)$, $\chi_{1988}(1653,·)$, $\chi_{1988}(1457,·)$, $\chi_{1988}(953,·)$, $\chi_{1988}(1175,·)$, $\chi_{1988}(1987,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{245} a^{4} - \frac{1}{5}$, $\frac{1}{245} a^{5} - \frac{1}{5} a$, $\frac{1}{1715} a^{6} - \frac{1}{35} a^{2}$, $\frac{1}{1715} a^{7} - \frac{1}{35} a^{3}$, $\frac{1}{60025} a^{8} - \frac{2}{1225} a^{4} + \frac{1}{25}$, $\frac{1}{60025} a^{9} - \frac{2}{1225} a^{5} + \frac{1}{25} a$, $\frac{1}{10504375} a^{10} - \frac{4}{1500625} a^{8} - \frac{57}{214375} a^{6} - \frac{22}{30625} a^{4} + \frac{306}{4375} a^{2} + \frac{276}{625}$, $\frac{1}{178574375} a^{11} + \frac{146}{25510625} a^{9} + \frac{4}{214375} a^{7} - \frac{41}{30625} a^{5} + \frac{3931}{74375} a^{3} + \frac{176}{10625} a$, $\frac{1}{353755836875} a^{12} - \frac{908}{50536548125} a^{10} + \frac{27}{424676875} a^{8} - \frac{7257}{60668125} a^{6} + \frac{170769}{147336875} a^{4} - \frac{1488973}{21048125} a^{2} + \frac{42788}{176875}$, $\frac{1}{353755836875} a^{13} - \frac{59}{50536548125} a^{11} + \frac{4138}{7219506875} a^{9} - \frac{3861}{60668125} a^{7} - \frac{180434}{147336875} a^{5} - \frac{1158429}{21048125} a^{3} + \frac{151309}{601375} a$
Class group and class number
$C_{2}\times C_{336516}$, which has order $673032$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 315114.6966253571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-497}) \), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ |
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $71$ | 71.14.13.1 | $x^{14} - 71$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |