Normalized defining polynomial
\( x^{14} + 28 x^{12} - 172 x^{11} + 1003 x^{10} - 3436 x^{9} + 15553 x^{8} - 83854 x^{7} + 224506 x^{6} - 7434 x^{5} - 756401 x^{4} + 1106991 x^{3} + 1133790 x^{2} + 439425 x + 1726875 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1563017639236784352773715591=-\,3^{7}\cdot 2557^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 2557$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{15} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{2}{5} a$, $\frac{1}{15} a^{6} - \frac{1}{3} a^{4} + \frac{4}{15} a^{2}$, $\frac{1}{45} a^{7} - \frac{1}{45} a^{6} - \frac{1}{9} a^{4} - \frac{16}{45} a^{3} + \frac{2}{15} a^{2} + \frac{1}{3} a$, $\frac{1}{225} a^{8} + \frac{1}{225} a^{7} - \frac{2}{225} a^{6} - \frac{1}{45} a^{5} + \frac{19}{225} a^{4} + \frac{19}{225} a^{3} - \frac{7}{25} a^{2} + \frac{2}{15} a$, $\frac{1}{225} a^{9} + \frac{2}{225} a^{7} + \frac{7}{225} a^{6} - \frac{2}{75} a^{5} + \frac{2}{9} a^{4} - \frac{29}{75} a^{3} + \frac{11}{75} a^{2}$, $\frac{1}{675} a^{10} - \frac{1}{675} a^{9} - \frac{1}{675} a^{8} + \frac{2}{675} a^{7} + \frac{8}{675} a^{6} + \frac{11}{675} a^{5} - \frac{194}{675} a^{4} + \frac{71}{225} a^{3} + \frac{47}{225} a^{2} + \frac{2}{5} a + \frac{1}{3}$, $\frac{1}{10125} a^{11} - \frac{1}{3375} a^{10} - \frac{8}{10125} a^{9} + \frac{16}{10125} a^{8} + \frac{58}{10125} a^{7} + \frac{298}{10125} a^{6} - \frac{59}{3375} a^{5} + \frac{304}{10125} a^{4} + \frac{299}{1125} a^{3} - \frac{137}{675} a^{2} - \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{455625} a^{12} - \frac{11}{455625} a^{11} - \frac{224}{455625} a^{10} + \frac{64}{91125} a^{9} + \frac{7}{91125} a^{8} + \frac{344}{455625} a^{7} - \frac{13436}{455625} a^{6} + \frac{2111}{91125} a^{5} + \frac{75754}{455625} a^{4} + \frac{33494}{151875} a^{3} - \frac{11753}{30375} a^{2} + \frac{736}{2025} a - \frac{2}{81}$, $\frac{1}{12194509913872782271875} a^{13} + \frac{1823143144813318}{12194509913872782271875} a^{12} - \frac{566295944086766543}{12194509913872782271875} a^{11} - \frac{5270753317714914826}{12194509913872782271875} a^{10} - \frac{5330747693212503047}{2438901982774556454375} a^{9} - \frac{21236985625784659066}{12194509913872782271875} a^{8} + \frac{265247770184537668}{221718362070414223125} a^{7} + \frac{137915434586252480761}{12194509913872782271875} a^{6} + \frac{400533893286581744149}{12194509913872782271875} a^{5} + \frac{537797319571748769497}{1354945545985864696875} a^{4} + \frac{1398353710265693004161}{4064836637957594090625} a^{3} + \frac{3692636954799830399}{30109901021908104375} a^{2} + \frac{2028066216966475819}{54197821839434587875} a - \frac{353970088067808533}{722637624525794505}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 846785501.713 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-7671}) \), 7.1.451394172711.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.451394172711.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 2557 | Data not computed | ||||||