Normalized defining polynomial
\( x^{14} - 7 x^{13} + 14 x^{12} - 7 x^{11} + 91 x^{10} - 616 x^{9} + 1869 x^{8} - 3805 x^{7} + 6965 x^{6} - 13006 x^{5} + 20615 x^{4} - 24689 x^{3} + 22526 x^{2} - 15855 x + 8635 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1519219683181760000000=-\,2^{12}\cdot 5^{7}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} - \frac{1}{13} a^{9} + \frac{2}{13} a^{7} - \frac{5}{13} a^{6} - \frac{3}{13} a^{5} - \frac{5}{13} a^{4} + \frac{2}{13} a^{3} + \frac{2}{13} a^{2} + \frac{2}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{12} - \frac{1}{13} a^{10} + \frac{2}{13} a^{8} - \frac{5}{13} a^{7} - \frac{3}{13} a^{6} - \frac{5}{13} a^{5} + \frac{2}{13} a^{4} + \frac{2}{13} a^{3} + \frac{2}{13} a^{2} - \frac{3}{13} a$, $\frac{1}{688470099609061871049} a^{13} - \frac{21112672754012246660}{688470099609061871049} a^{12} - \frac{22831577843023664681}{688470099609061871049} a^{11} + \frac{85854245890798038322}{688470099609061871049} a^{10} + \frac{56942517430159755708}{229490033203020623683} a^{9} - \frac{293570460697681588750}{688470099609061871049} a^{8} - \frac{49303451362355378897}{688470099609061871049} a^{7} + \frac{332206980343729876756}{688470099609061871049} a^{6} + \frac{99117383095477125085}{688470099609061871049} a^{5} + \frac{98429847036096947407}{688470099609061871049} a^{4} + \frac{300039762854757732724}{688470099609061871049} a^{3} + \frac{67570752602887919204}{229490033203020623683} a^{2} + \frac{156780569667322162052}{688470099609061871049} a + \frac{340949388951406806076}{688470099609061871049}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 98751.2336328229 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_7$ (as 14T7):
| A solvable group of order 84 |
| The 14 conjugacy class representatives for $F_7 \times C_2$ |
| Character table for $F_7 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-35}) \), 7.1.52706752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.12.1 | $x^{14} - 2 x^{7} + 4$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.14.15.1 | $x^{14} + 21 x^{13} + 14 x^{12} + 7 x^{11} - 14 x^{10} - 7 x^{9} - 7 x^{8} - 7 x^{7} - 7 x^{6} - 21 x^{5} - 7 x^{4} - 14 x^{3} + 7 x^{2} + 21$ | $14$ | $1$ | $15$ | $F_7 \times C_2$ | $[7/6]_{6}^{2}$ |