Normalized defining polynomial
\( x^{14} - 38 x^{12} - 130 x^{11} + 709 x^{10} + 3185 x^{9} - 434 x^{8} - 35365 x^{7} - 47811 x^{6} + 30960 x^{5} + 562767 x^{4} + 1094380 x^{3} + 1667351 x^{2} + 1089515 x + 445655 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-151277339258832781070234375=-\,5^{7}\cdot 7^{7}\cdot 157^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{17} a^{9} - \frac{5}{17} a^{8} - \frac{5}{17} a^{7} + \frac{4}{17} a^{6} - \frac{6}{17} a^{5} + \frac{6}{17} a^{4} + \frac{4}{17} a^{3} - \frac{5}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{595} a^{10} + \frac{1}{119} a^{9} - \frac{4}{17} a^{8} + \frac{1}{119} a^{7} + \frac{9}{35} a^{6} + \frac{47}{119} a^{5} - \frac{4}{17} a^{4} + \frac{41}{119} a^{3} + \frac{296}{595} a^{2} - \frac{8}{17} a$, $\frac{1}{595} a^{11} + \frac{2}{119} a^{9} - \frac{2}{7} a^{8} - \frac{152}{595} a^{7} + \frac{2}{7} a^{6} + \frac{3}{119} a^{5} + \frac{2}{7} a^{4} - \frac{29}{595} a^{3} - \frac{3}{7} a^{2} + \frac{2}{17} a$, $\frac{1}{3390497425} a^{12} - \frac{9610}{19374271} a^{11} - \frac{214889}{3390497425} a^{10} - \frac{3996557}{678099485} a^{9} + \frac{519108}{3390497425} a^{8} + \frac{23838882}{96871355} a^{7} + \frac{161637419}{484356775} a^{6} + \frac{23502477}{135619897} a^{5} + \frac{754074761}{3390497425} a^{4} + \frac{276154232}{678099485} a^{3} - \frac{1527535994}{3390497425} a^{2} - \frac{24410026}{96871355} a - \frac{514946}{5698315}$, $\frac{1}{13999303844536962721525} a^{13} + \frac{274194244154}{1999900549219566103075} a^{12} - \frac{2588606757710925584}{13999303844536962721525} a^{11} + \frac{5232158646867713753}{13999303844536962721525} a^{10} + \frac{145957621225845394478}{13999303844536962721525} a^{9} - \frac{812717469824230438283}{1999900549219566103075} a^{8} - \frac{839699984307125492781}{1999900549219566103075} a^{7} + \frac{64034309019934840089}{13999303844536962721525} a^{6} - \frac{2105609483123024364389}{13999303844536962721525} a^{5} - \frac{5716461085199665906057}{13999303844536962721525} a^{4} + \frac{410722348808304116691}{13999303844536962721525} a^{3} - \frac{401750937254925348116}{1999900549219566103075} a^{2} + \frac{16800807214672331953}{79996021968782644123} a + \frac{1047973287372293771}{3361177393646329585}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23628085.1406 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| \(\Q(\sqrt{-5495}) \), 7.1.165921662375.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.1.165921662375.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $157$ | 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |