Normalized defining polynomial
\( x^{14} - 7 x^{13} + 35 x^{12} - 119 x^{11} + 329 x^{10} - 721 x^{9} + 1337 x^{8} + 375 x^{7} - 5796 x^{6} - 79114 x^{5} + 214382 x^{4} + 40446 x^{3} - 278390 x^{2} + 75782 x + 1479958 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14899881763033509191236903000000000000=-\,2^{12}\cdot 5^{12}\cdot 7^{15}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $452.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} + \frac{2}{7}$, $\frac{1}{77} a^{8} - \frac{4}{77} a^{7} + \frac{2}{11} a^{6} - \frac{4}{11} a^{5} - \frac{4}{11} a^{4} + \frac{3}{11} a^{3} - \frac{3}{11} a^{2} + \frac{23}{77} a + \frac{27}{77}$, $\frac{1}{77} a^{9} - \frac{2}{77} a^{7} + \frac{4}{11} a^{6} + \frac{2}{11} a^{5} - \frac{2}{11} a^{4} - \frac{2}{11} a^{3} + \frac{16}{77} a^{2} - \frac{5}{11} a + \frac{31}{77}$, $\frac{1}{77} a^{10} - \frac{2}{77} a^{7} - \frac{5}{11} a^{6} + \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{19}{77} a^{3} + \frac{10}{77}$, $\frac{1}{539} a^{11} + \frac{1}{539} a^{10} + \frac{3}{539} a^{9} - \frac{3}{539} a^{8} + \frac{16}{539} a^{7} - \frac{27}{77} a^{6} + \frac{12}{77} a^{5} - \frac{103}{539} a^{4} - \frac{236}{539} a^{3} - \frac{85}{539} a^{2} + \frac{267}{539} a + \frac{263}{539}$, $\frac{1}{539} a^{12} + \frac{2}{539} a^{10} + \frac{1}{539} a^{9} - \frac{2}{539} a^{8} + \frac{19}{539} a^{7} + \frac{25}{77} a^{6} - \frac{40}{539} a^{5} - \frac{26}{77} a^{4} + \frac{151}{539} a^{3} - \frac{173}{539} a^{2} - \frac{193}{539} a + \frac{234}{539}$, $\frac{1}{5233066030084578797111} a^{13} + \frac{2041763038197824542}{5233066030084578797111} a^{12} + \frac{209207104071960840}{402543540775736830547} a^{11} - \frac{2713734140483471858}{475733275462234436101} a^{10} - \frac{1249361563563054087}{5233066030084578797111} a^{9} - \frac{14413386012675128840}{5233066030084578797111} a^{8} - \frac{31389690264260924670}{747580861440654113873} a^{7} - \frac{1422841443152038949814}{5233066030084578797111} a^{6} + \frac{81150125731093511745}{402543540775736830547} a^{5} + \frac{1994708319322306752103}{5233066030084578797111} a^{4} + \frac{101881925267252867734}{402543540775736830547} a^{3} + \frac{1538216373526881543602}{5233066030084578797111} a^{2} + \frac{103013072616475886549}{5233066030084578797111} a - \frac{33406534147331493197}{106797265920093444839}$
Class group and class number
$C_{7}\times C_{7}$, which has order $49$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 628315297159.5366 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.1.1458956660623000000.11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $5$ | 5.14.12.1 | $x^{14} - 5 x^{7} + 50$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ |
| $7$ | 7.14.15.5 | $x^{14} - 21 x^{13} + 7 x^{12} + 14 x^{11} - 21 x^{9} + 7 x^{7} + 14 x^{6} - 21 x^{4} + 14 x^{3} + 7 x^{2} + 14$ | $14$ | $1$ | $15$ | $F_7$ | $[7/6]_{6}$ |
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |