Normalized defining polynomial
\( x^{14} - x^{13} + 151 x^{12} + 840 x^{11} + 2926 x^{10} + 40327 x^{9} + 7130 x^{8} + 230853 x^{7} + 5480474 x^{6} - 21756177 x^{5} + 114730846 x^{4} - 228502327 x^{3} + 553225015 x^{2} - 423159590 x + 786888991 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-148946719271275003088728003994769267=-\,3^{7}\cdot 281^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $325.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 281$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(843=3\cdot 281\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{843}(32,·)$, $\chi_{843}(1,·)$, $\chi_{843}(503,·)$, $\chi_{843}(842,·)$, $\chi_{843}(811,·)$, $\chi_{843}(109,·)$, $\chi_{843}(79,·)$, $\chi_{843}(116,·)$, $\chi_{843}(181,·)$, $\chi_{843}(662,·)$, $\chi_{843}(727,·)$, $\chi_{843}(340,·)$, $\chi_{843}(764,·)$, $\chi_{843}(734,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{49} a^{10} + \frac{2}{49} a^{9} + \frac{2}{49} a^{7} + \frac{1}{49} a^{6} + \frac{4}{49} a^{5} + \frac{8}{49} a^{4} + \frac{13}{49} a^{3} - \frac{10}{49} a^{2} - \frac{3}{7} a$, $\frac{1}{343} a^{11} + \frac{1}{343} a^{10} + \frac{19}{343} a^{9} - \frac{5}{343} a^{8} + \frac{13}{343} a^{7} - \frac{11}{343} a^{6} - \frac{3}{343} a^{5} + \frac{75}{343} a^{4} - \frac{58}{343} a^{3} + \frac{136}{343} a^{2} + \frac{4}{49} a + \frac{3}{7}$, $\frac{1}{343} a^{12} - \frac{3}{343} a^{10} - \frac{17}{343} a^{9} + \frac{18}{343} a^{8} - \frac{17}{343} a^{7} - \frac{13}{343} a^{6} - \frac{6}{343} a^{5} + \frac{6}{49} a^{4} - \frac{128}{343} a^{3} + \frac{102}{343} a^{2} + \frac{24}{49} a - \frac{3}{7}$, $\frac{1}{8498985255585801129845889728572566150706644767} a^{13} + \frac{1272199522992577046256185558759907324798056}{1214140750797971589977984246938938021529520681} a^{12} + \frac{1993378649895567088121432688636082446007907}{8498985255585801129845889728572566150706644767} a^{11} + \frac{71131573274404215679152020428365618444526226}{8498985255585801129845889728572566150706644767} a^{10} - \frac{485162680478966552140078891535631778155885097}{8498985255585801129845889728572566150706644767} a^{9} + \frac{382110169068870390346892652335298116401921152}{8498985255585801129845889728572566150706644767} a^{8} + \frac{540454495484524104432057075073403723771840959}{8498985255585801129845889728572566150706644767} a^{7} - \frac{107563783632624384939448722089834918172019887}{8498985255585801129845889728572566150706644767} a^{6} - \frac{35895873642399707987158006289375304842761892}{1214140750797971589977984246938938021529520681} a^{5} + \frac{2995925827319768177589972809703031856920912835}{8498985255585801129845889728572566150706644767} a^{4} - \frac{2502364972144825502618232917828430241047945224}{8498985255585801129845889728572566150706644767} a^{3} - \frac{334562013638626967213346100097838608604703868}{1214140750797971589977984246938938021529520681} a^{2} - \frac{55800386497784883725952270695724987597245961}{173448678685424512853997749562705431647074383} a + \frac{165873757382494707445421306978626399746650}{3539768952763765568448933664545008809123967}$
Class group and class number
$C_{190518}$, which has order $190518$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12176100.831221418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-843}) \), 7.7.492309163417681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| 281 | Data not computed | ||||||