Normalized defining polynomial
\( x^{14} - x^{13} + 106 x^{12} + 223 x^{11} + 3759 x^{10} + 16405 x^{9} + 45656 x^{8} + 151316 x^{7} - 88208 x^{6} - 1979796 x^{5} + 6623518 x^{4} - 7131374 x^{3} + 191487834 x^{2} - 886029565 x + 1175495059 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1472006484410430025621015411349799=-\,3^{7}\cdot 197^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $233.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(591=3\cdot 197\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{591}(1,·)$, $\chi_{591}(290,·)$, $\chi_{591}(388,·)$, $\chi_{591}(230,·)$, $\chi_{591}(161,·)$, $\chi_{591}(361,·)$, $\chi_{591}(203,·)$, $\chi_{591}(301,·)$, $\chi_{591}(430,·)$, $\chi_{591}(178,·)$, $\chi_{591}(83,·)$, $\chi_{591}(590,·)$, $\chi_{591}(508,·)$, $\chi_{591}(413,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2147} a^{11} - \frac{142}{2147} a^{10} - \frac{1054}{2147} a^{9} + \frac{287}{2147} a^{8} - \frac{806}{2147} a^{7} + \frac{667}{2147} a^{6} - \frac{630}{2147} a^{5} + \frac{961}{2147} a^{4} - \frac{316}{2147} a^{3} - \frac{29}{113} a^{2} - \frac{564}{2147} a + \frac{36}{113}$, $\frac{1}{2147} a^{12} + \frac{252}{2147} a^{10} + \frac{909}{2147} a^{9} - \frac{845}{2147} a^{8} + \frac{6}{2147} a^{7} - \frac{384}{2147} a^{6} - \frac{472}{2147} a^{5} + \frac{885}{2147} a^{4} - \frac{336}{2147} a^{3} + \frac{633}{2147} a^{2} + \frac{35}{2147} a + \frac{27}{113}$, $\frac{1}{877926006816011973623058339589158712500401413471} a^{13} - \frac{151276146087683258298744499691801111422217302}{877926006816011973623058339589158712500401413471} a^{12} - \frac{123458090693913350371063426796777033639106510}{877926006816011973623058339589158712500401413471} a^{11} - \frac{384164646638767731006092114013226208609769809032}{877926006816011973623058339589158712500401413471} a^{10} - \frac{8859595531926479178598161656908509993926117079}{46206631937684840717003070504692563815810600709} a^{9} - \frac{35719123102146236086833477468197585592914549890}{877926006816011973623058339589158712500401413471} a^{8} + \frac{261017778668053571939981532662329623809192390145}{877926006816011973623058339589158712500401413471} a^{7} - \frac{159650086106516461409383621519499415890443581699}{877926006816011973623058339589158712500401413471} a^{6} + \frac{380817795527750939750196434385801744411492331496}{877926006816011973623058339589158712500401413471} a^{5} + \frac{209372160687293090876063147211634344823899222019}{877926006816011973623058339589158712500401413471} a^{4} - \frac{333620648614681256513459072251927754889313005789}{877926006816011973623058339589158712500401413471} a^{3} + \frac{141893782913415806336074224906158761357876995438}{877926006816011973623058339589158712500401413471} a^{2} + \frac{12285306214605006858122032683977324639924367107}{46206631937684840717003070504692563815810600709} a - \frac{622247083263252374316196661310735503224311002}{2431927996720254774579108973931187569253189511}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4334}$, which has order $34672$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1553055.199048291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-591}) \), 7.7.58451728309129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $197$ | 197.14.13.11 | $x^{14} + 25216$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |