Normalized defining polynomial
\( x^{14} - 5 x^{13} - 85 x^{12} + 413 x^{11} + 2536 x^{10} - 12422 x^{9} - 23248 x^{8} + 150497 x^{7} + 150754 x^{6} - 1228000 x^{5} + 66341 x^{4} + 5215705 x^{3} - 2368956 x^{2} - 14809311 x + 22851677 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14498762356636996870828289312503=-\,7^{7}\cdot 127^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $168.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(889=7\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{889}(512,·)$, $\chi_{889}(1,·)$, $\chi_{889}(258,·)$, $\chi_{889}(643,·)$, $\chi_{889}(8,·)$, $\chi_{889}(636,·)$, $\chi_{889}(778,·)$, $\chi_{889}(524,·)$, $\chi_{889}(64,·)$, $\chi_{889}(286,·)$, $\chi_{889}(540,·)$, $\chi_{889}(699,·)$, $\chi_{889}(764,·)$, $\chi_{889}(510,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} - \frac{9}{19} a^{9} + \frac{8}{19} a^{8} + \frac{9}{19} a^{7} - \frac{8}{19} a^{6} + \frac{3}{19} a^{5} - \frac{2}{19} a^{4} + \frac{1}{19} a^{3} + \frac{3}{19} a^{2} + \frac{6}{19} a + \frac{4}{19}$, $\frac{1}{703} a^{11} + \frac{13}{703} a^{10} - \frac{9}{37} a^{9} + \frac{204}{703} a^{8} - \frac{11}{37} a^{7} - \frac{78}{703} a^{6} + \frac{140}{703} a^{5} - \frac{43}{703} a^{4} + \frac{215}{703} a^{3} + \frac{167}{703} a^{2} - \frac{187}{703} a + \frac{107}{703}$, $\frac{1}{13357} a^{12} - \frac{7}{13357} a^{11} + \frac{235}{13357} a^{10} + \frac{4660}{13357} a^{9} - \frac{5991}{13357} a^{8} - \frac{1152}{13357} a^{7} - \frac{816}{13357} a^{6} - \frac{4360}{13357} a^{5} + \frac{2555}{13357} a^{4} - \frac{4170}{13357} a^{3} + \frac{580}{13357} a^{2} + \frac{3625}{13357} a + \frac{1930}{13357}$, $\frac{1}{3246617032231010311161396361543271} a^{13} + \frac{48311658449313957069857799553}{3246617032231010311161396361543271} a^{12} + \frac{683153096728992943587585879201}{3246617032231010311161396361543271} a^{11} + \frac{50103425423787702341356621756424}{3246617032231010311161396361543271} a^{10} + \frac{17924678957921191836949804883968}{87746406276513792193551253014683} a^{9} - \frac{165156025983411841266371423426437}{3246617032231010311161396361543271} a^{8} + \frac{101710668128469750162946067374996}{3246617032231010311161396361543271} a^{7} - \frac{1608319432300615792712222526190523}{3246617032231010311161396361543271} a^{6} + \frac{816122243927102458638447627680879}{3246617032231010311161396361543271} a^{5} - \frac{1605067972884087338424318088570488}{3246617032231010311161396361543271} a^{4} + \frac{1007783975907275222688470289333313}{3246617032231010311161396361543271} a^{3} + \frac{1032690364434278455171966621540104}{3246617032231010311161396361543271} a^{2} + \frac{1254894135767349006944601754408928}{3246617032231010311161396361543271} a + \frac{235167443990296240298850942516715}{3246617032231010311161396361543271}$
Class group and class number
$C_{8141}$, which has order $8141$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 546287.2103473756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 7.7.4195872914689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.7.1 | $x^{14} - 117649 x^{2} + 1647086$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $127$ | 127.7.6.1 | $x^{7} - 127$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 127.7.6.1 | $x^{7} - 127$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |