Normalized defining polynomial
\( x^{14} - 2233 x^{11} + 24360 x^{10} + 125454 x^{9} + 1069810 x^{8} - 18378373 x^{7} - 133193172 x^{6} + 756770602 x^{5} + 5834381182 x^{4} - 26703542026 x^{3} + 188327791736 x^{2} - 2109103641127 x + 5899794618083 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13760207184971837367389621368916758066523=-\,7^{25}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $736.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(547,·)$, $\chi_{1421}(806,·)$, $\chi_{1421}(615,·)$, $\chi_{1421}(874,·)$, $\chi_{1421}(1420,·)$, $\chi_{1421}(622,·)$, $\chi_{1421}(239,·)$, $\chi_{1421}(372,·)$, $\chi_{1421}(281,·)$, $\chi_{1421}(1140,·)$, $\chi_{1421}(799,·)$, $\chi_{1421}(1182,·)$, $\chi_{1421}(1049,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{23} a^{9} - \frac{8}{23} a^{8} + \frac{1}{23} a^{7} - \frac{4}{23} a^{6} + \frac{2}{23} a^{5} - \frac{6}{23} a^{4} + \frac{8}{23} a^{3} - \frac{9}{23} a^{2} - \frac{9}{23} a + \frac{7}{23}$, $\frac{1}{23} a^{10} + \frac{6}{23} a^{8} + \frac{4}{23} a^{7} - \frac{7}{23} a^{6} + \frac{10}{23} a^{5} + \frac{6}{23} a^{4} + \frac{9}{23} a^{3} + \frac{11}{23} a^{2} + \frac{4}{23} a + \frac{10}{23}$, $\frac{1}{23} a^{11} + \frac{6}{23} a^{8} + \frac{10}{23} a^{7} + \frac{11}{23} a^{6} - \frac{6}{23} a^{5} - \frac{1}{23} a^{4} + \frac{9}{23} a^{3} - \frac{11}{23} a^{2} - \frac{5}{23} a + \frac{4}{23}$, $\frac{1}{3473} a^{12} - \frac{18}{3473} a^{11} - \frac{74}{3473} a^{10} + \frac{72}{3473} a^{9} - \frac{334}{3473} a^{8} + \frac{130}{3473} a^{7} + \frac{556}{3473} a^{6} + \frac{603}{3473} a^{5} + \frac{1004}{3473} a^{4} + \frac{724}{3473} a^{3} - \frac{1606}{3473} a^{2} + \frac{147}{3473} a - \frac{258}{3473}$, $\frac{1}{1255815893293075750397942618089950589221778358826543404183108874389} a^{13} + \frac{58323077973116125693616361354063653451631680299207966042706074}{1255815893293075750397942618089950589221778358826543404183108874389} a^{12} - \frac{6911863697946168835392464631760843232830369627750267764625848423}{1255815893293075750397942618089950589221778358826543404183108874389} a^{11} + \frac{23693520865991039430127075551092430622848278922973184544196320009}{1255815893293075750397942618089950589221778358826543404183108874389} a^{10} + \frac{13013581595780680446917129388713896440076570335634336130796918059}{1255815893293075750397942618089950589221778358826543404183108874389} a^{9} - \frac{238194282661242944875981754928719708106430193354762864181258849437}{1255815893293075750397942618089950589221778358826543404183108874389} a^{8} + \frac{440081459787081630804239813576156573995561091940856250189738114495}{1255815893293075750397942618089950589221778358826543404183108874389} a^{7} + \frac{416048383000957208771870199232145999826048974325971084360220232076}{1255815893293075750397942618089950589221778358826543404183108874389} a^{6} + \frac{570132389036693530073050194679990550519894597826111482383643616199}{1255815893293075750397942618089950589221778358826543404183108874389} a^{5} + \frac{361317375997747661179284721105641186409312205334255562180219478285}{1255815893293075750397942618089950589221778358826543404183108874389} a^{4} - \frac{615829241128155768787047435919186367261166264445818345077504828104}{1255815893293075750397942618089950589221778358826543404183108874389} a^{3} - \frac{172051391350817591794560139250950490207866537742795948384751503769}{1255815893293075750397942618089950589221778358826543404183108874389} a^{2} - \frac{431220638766052787389590596599363508639212657788264621812709518250}{1255815893293075750397942618089950589221778358826543404183108874389} a + \frac{147368742173318308553022394700074806796056404612677702364832684431}{1255815893293075750397942618089950589221778358826543404183108874389}$
Class group and class number
$C_{13}\times C_{163436}$, which has order $2124668$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78882035.29112078 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.8233120419813614521.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{14}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.89 | $x^{14} - 14 x^{13} + 21 x^{12} + 14 x^{7} - 21$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.14.13.4 | $x^{14} - 1856$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |