Normalized defining polynomial
\( x^{14} - 812 x^{11} - 22533 x^{10} - 73486 x^{9} + 366415 x^{8} + 7780816 x^{7} + 302972831 x^{6} + 1609330814 x^{5} - 12742935849 x^{4} - 72797482464 x^{3} + 323107507394 x^{2} + 606858815682 x + 699223478963 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13760207184971837367389621368916758066523=-\,7^{25}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $736.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(643,·)$, $\chi_{1421}(778,·)$, $\chi_{1421}(1420,·)$, $\chi_{1421}(78,·)$, $\chi_{1421}(1359,·)$, $\chi_{1421}(848,·)$, $\chi_{1421}(1002,·)$, $\chi_{1421}(400,·)$, $\chi_{1421}(419,·)$, $\chi_{1421}(573,·)$, $\chi_{1421}(1021,·)$, $\chi_{1421}(62,·)$, $\chi_{1421}(1343,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{2} + \frac{1}{16} a + \frac{1}{16}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{8} a - \frac{1}{16}$, $\frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{64} a^{6} - \frac{3}{32} a^{5} - \frac{7}{64} a^{4} + \frac{3}{16} a^{3} + \frac{25}{64} a^{2} + \frac{7}{16} a + \frac{11}{64}$, $\frac{1}{64} a^{11} + \frac{1}{64} a^{9} + \frac{3}{64} a^{7} + \frac{1}{16} a^{6} - \frac{3}{64} a^{5} + \frac{7}{32} a^{4} - \frac{3}{64} a^{3} + \frac{15}{32} a^{2} + \frac{11}{64} a + \frac{13}{32}$, $\frac{1}{512} a^{12} + \frac{3}{512} a^{11} - \frac{7}{512} a^{9} + \frac{3}{256} a^{8} + \frac{3}{512} a^{7} + \frac{1}{256} a^{6} + \frac{59}{512} a^{5} - \frac{49}{256} a^{4} - \frac{123}{512} a^{3} + \frac{7}{64} a^{2} - \frac{37}{512} a + \frac{251}{512}$, $\frac{1}{7488419203606572977001823651625543822960115058426474287594738176} a^{13} - \frac{1152817883198195590938065623772392497291442020060730275724647}{7488419203606572977001823651625543822960115058426474287594738176} a^{12} - \frac{4366116335228118777774308027285901147477055198181153871639231}{3744209601803286488500911825812771911480057529213237143797369088} a^{11} - \frac{45911071401800820683378101566917070863610479749925369192493535}{7488419203606572977001823651625543822960115058426474287594738176} a^{10} + \frac{36369360102148735050431106146768473956084667771892665688162615}{1872104800901643244250455912906385955740028764606618571898684544} a^{9} - \frac{70991865742366128107105016059239714407673657838943300868674065}{7488419203606572977001823651625543822960115058426474287594738176} a^{8} - \frac{90335558110231674955218940275553057814704542483292938615472579}{1872104800901643244250455912906385955740028764606618571898684544} a^{7} - \frac{809646357954440217966453729773992323871671046113574637126322049}{7488419203606572977001823651625543822960115058426474287594738176} a^{6} + \frac{1274591880695523089773886261873875119593449490171730095152463}{14625818757044087845706686819581140279218974723489207592958473} a^{5} - \frac{297864046119194366925063535568188350991091827677807656784479871}{7488419203606572977001823651625543822960115058426474287594738176} a^{4} + \frac{294472934428905955912708124103742411945996472383955283142430755}{3744209601803286488500911825812771911480057529213237143797369088} a^{3} - \frac{825871119611344462873779811233350980730374318307774456749958701}{7488419203606572977001823651625543822960115058426474287594738176} a^{2} + \frac{959068942879196517743028245180158998383041675071501900736677037}{7488419203606572977001823651625543822960115058426474287594738176} a - \frac{14427220627873726935473542401577713265381054627491795061750807}{61380485275463712926244456160865113302951762773987494160612608}$
Class group and class number
$C_{91756}$, which has order $91756$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8981416884.6774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.8233120419813614521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.73 | $x^{14} + 35 x^{13} + 21 x^{12} + 98 x^{11} - 49 x^{10} + 147 x^{9} - 147 x^{8} + 14 x^{7} - 49 x^{6} + 147 x^{5} + 98 x^{4} + 147 x^{3} + 49 x^{2} - 49 x + 28$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.14.13.2 | $x^{14} - 116$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |