Normalized defining polynomial
\( x^{14} - 2233 x^{11} + 15834 x^{10} + 276080 x^{9} + 6725390 x^{8} + 45617783 x^{7} + 410450166 x^{6} + 1371017746 x^{5} + 8530487112 x^{4} - 10631790456 x^{3} + 88403705502 x^{2} - 488778538759 x + 525016637623 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13760207184971837367389621368916758066523=-\,7^{25}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $736.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1184,·)$, $\chi_{1421}(1,·)$, $\chi_{1421}(36,·)$, $\chi_{1421}(6,·)$, $\chi_{1421}(1415,·)$, $\chi_{1421}(1385,·)$, $\chi_{1421}(1420,·)$, $\chi_{1421}(237,·)$, $\chi_{1421}(750,·)$, $\chi_{1421}(1296,·)$, $\chi_{1421}(1205,·)$, $\chi_{1421}(216,·)$, $\chi_{1421}(125,·)$, $\chi_{1421}(671,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{13} + \frac{96399567621966156268153919147983297282273253862251853987473265020335270}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{12} + \frac{2329726409576080457069352871429816853711385889100387771828089649977721}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{11} - \frac{37562037506772949768135496794468548516167839588460628250021744811854997}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{10} + \frac{18484092635762140301792886909407685741061650199627915075401947110451490}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{9} - \frac{66093372257527656274376458579261956871935983432727131965537648312462328}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{8} - \frac{28739826566534978051201396116849055490526911461172637780664640772945947}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{7} + \frac{96928644310213850295448568331619780505473243594461767246479741937539236}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{6} - \frac{18798672295696293726857066988425795673845774169541326245280677324863377}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{5} + \frac{92658714510049960249588048391484964453591265924134552109312907388667542}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{4} - \frac{40382752687399612311210959718612505430670320770469980153111771417505227}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{3} + \frac{79207351399838029148874532938629729683753251718757409062335148170756529}{201376763354354085589007560817035440584226870964866888681790878886620901} a^{2} - \frac{7239459799850928645796503966763407714337753141280360402927156204867771}{201376763354354085589007560817035440584226870964866888681790878886620901} a - \frac{242210223044674018620302771574665876614988568970663016842109541527824}{502186442280184752092288181588617058813533344052037128882271518420501}$
Class group and class number
$C_{1383004}$, which has order $1383004$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59811086.44175506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.8233120419813614521.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.52 | $x^{14} - 56 x^{13} - 112 x^{12} + 49 x^{11} + 98 x^{10} - 147 x^{9} - 42 x^{7} + 98 x^{6} - 49 x^{5} + 98 x^{4} - 98 x^{3} + 147 x - 84$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.14.13.7 | $x^{14} - 118784$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |