Normalized defining polynomial
\( x^{14} - 3451 x^{11} + 7308 x^{10} - 116928 x^{9} + 872291 x^{8} + 25631157 x^{7} - 22304016 x^{6} + 952727923 x^{5} + 661193736 x^{4} - 17074022049 x^{3} + 220567618782 x^{2} - 301664396124 x + 157023868437 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13760207184971837367389621368916758066523=-\,7^{25}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $736.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1280,·)$, $\chi_{1421}(1,·)$, $\chi_{1421}(1252,·)$, $\chi_{1421}(645,·)$, $\chi_{1421}(328,·)$, $\chi_{1421}(169,·)$, $\chi_{1421}(1420,·)$, $\chi_{1421}(13,·)$, $\chi_{1421}(776,·)$, $\chi_{1421}(141,·)$, $\chi_{1421}(1009,·)$, $\chi_{1421}(1408,·)$, $\chi_{1421}(412,·)$, $\chi_{1421}(1093,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{27} a^{6} + \frac{1}{27} a^{4} + \frac{1}{9} a^{3} + \frac{7}{27} a^{2} - \frac{4}{9} a$, $\frac{1}{27} a^{7} + \frac{1}{27} a^{5} + \frac{1}{9} a^{4} - \frac{2}{27} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{243} a^{8} - \frac{1}{243} a^{7} + \frac{1}{243} a^{6} + \frac{11}{243} a^{5} - \frac{5}{243} a^{4} + \frac{26}{243} a^{3} - \frac{29}{81} a^{2} + \frac{2}{9} a$, $\frac{1}{243} a^{9} + \frac{1}{81} a^{6} + \frac{2}{81} a^{5} + \frac{4}{81} a^{4} - \frac{7}{243} a^{3} - \frac{32}{81} a^{2} + \frac{1}{3} a$, $\frac{1}{243} a^{10} + \frac{1}{81} a^{7} - \frac{1}{81} a^{6} + \frac{4}{81} a^{5} - \frac{16}{243} a^{4} + \frac{13}{81} a^{3} + \frac{2}{27} a^{2} - \frac{2}{9} a$, $\frac{1}{6561} a^{11} - \frac{7}{6561} a^{10} - \frac{2}{2187} a^{9} + \frac{1}{729} a^{8} - \frac{25}{2187} a^{7} + \frac{22}{2187} a^{6} - \frac{763}{6561} a^{5} + \frac{931}{6561} a^{4} - \frac{133}{2187} a^{3} - \frac{2}{9} a^{2} + \frac{7}{27} a$, $\frac{1}{72171} a^{12} + \frac{5}{72171} a^{11} - \frac{13}{8019} a^{10} + \frac{8}{8019} a^{9} + \frac{20}{24057} a^{8} + \frac{23}{2187} a^{7} - \frac{1159}{72171} a^{6} + \frac{3007}{72171} a^{5} + \frac{272}{2673} a^{4} - \frac{82}{8019} a^{3} - \frac{92}{297} a^{2} + \frac{1}{11} a + \frac{3}{11}$, $\frac{1}{4330751329419652045942589304419313031414522784733303} a^{13} - \frac{23819874508056786869304595081386563717115720188}{4330751329419652045942589304419313031414522784733303} a^{12} - \frac{110633985075727002146050388392472766925106823239}{4330751329419652045942589304419313031414522784733303} a^{11} - \frac{2131570562966044893304680813365766224785235222428}{1443583776473217348647529768139771010471507594911101} a^{10} + \frac{1244585495737279249886277406715962623366420556721}{1443583776473217348647529768139771010471507594911101} a^{9} + \frac{2105729841113552400742154244844021041945647980517}{1443583776473217348647529768139771010471507594911101} a^{8} - \frac{49586957462344835066218642119496770702728560900333}{4330751329419652045942589304419313031414522784733303} a^{7} + \frac{3175219216828947122833731763718250585478217171252}{4330751329419652045942589304419313031414522784733303} a^{6} - \frac{348926782167093858389618132987030736816739950057928}{4330751329419652045942589304419313031414522784733303} a^{5} + \frac{224555644813881798052859646385627676199018547579849}{1443583776473217348647529768139771010471507594911101} a^{4} + \frac{9530526290784494423823598120158980178746722499414}{160398197385913038738614418682196778941278621656789} a^{3} + \frac{144042766083611991742634590955344296436611581323}{336264564750341800290596265581125322728047424857} a^{2} - \frac{699640944834071540468741618791081972796220768242}{1980224659085346157266844675088849122731834835269} a - \frac{702663419045907396981654669249285598680113738}{1560460724259532038823360658068439025005386001}$
Class group and class number
$C_{11598916}$, which has order $11598916$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4115791439.997621 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.8233120419813614521.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.54 | $x^{14} - 119 x^{13} + 133 x^{12} - 98 x^{11} + 98 x^{10} + 98 x^{9} - 49 x^{8} + 21 x^{7} + 147 x^{6} + 98 x^{5} - 49 x^{4} + 49 x^{2} - 147 x + 112$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.14.13.5 | $x^{14} - 7424$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |