Normalized defining polynomial
\( x^{14} - 2233 x^{11} - 1218 x^{10} - 249690 x^{9} + 5972260 x^{8} - 9384864 x^{7} - 13421345 x^{6} + 139144320 x^{5} + 959190225 x^{4} + 11388585418 x^{3} + 64346564856 x^{2} + 136319294454 x + 97550940167 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13760207184971837367389621368916758066523=-\,7^{25}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $736.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(1254,·)$, $\chi_{1421}(167,·)$, $\chi_{1421}(1420,·)$, $\chi_{1421}(846,·)$, $\chi_{1421}(1231,·)$, $\chi_{1421}(818,·)$, $\chi_{1421}(531,·)$, $\chi_{1421}(468,·)$, $\chi_{1421}(953,·)$, $\chi_{1421}(890,·)$, $\chi_{1421}(603,·)$, $\chi_{1421}(190,·)$, $\chi_{1421}(575,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{13} - \frac{120923211754154264253435493049380589444578056164379571695215147793315759}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{12} - \frac{96561814084797200836787402532123010756080992040411308139077610370076864}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{11} - \frac{214043840412880394862491878508143496732827040112337657911298927095768660}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{10} - \frac{3164120954048646459104369033870184056378500034559928729416284948878879}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{9} + \frac{209731471825576027704612119525667888629952459590005149059307519586908891}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{8} - \frac{208339114876422830967601888412606541372562596819850044218299152295116369}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{7} + \frac{310166328066474174290382835218155107678440603112805916587766954403735084}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{6} - \frac{148618431216191690757343519238460969122223982705143697315574913420961455}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{5} - \frac{120181056907674871549083011578124474082355684973321076490854774746612138}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{4} + \frac{31607211957063992415363839845319732571953698283657807616255748218126}{79563169217148990426862329496658775395181883908608615004082563085741} a^{3} - \frac{94048892769351926723240248465790765448006117211962965599724450312490498}{638335306629186350194716469551693354995544254598766918177754403636900043} a^{2} + \frac{2238351734131629533961701651861874668595799365187499697580934038313763}{638335306629186350194716469551693354995544254598766918177754403636900043} a - \frac{226122964294278668833323434434815525719534096063221191695072918522278082}{638335306629186350194716469551693354995544254598766918177754403636900043}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{156044}$, which has order $1248352$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93363968.92853843 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.8233120419813614521.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.95 | $x^{14} + 168 x^{13} + 140 x^{12} + 49 x^{11} + 49 x^{10} - 49 x^{9} - 168 x^{7} - 147 x^{6} + 147 x^{5} - 49 x^{4} - 98 x^{3} + 98 x^{2} - 98 x - 91$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.14.13.3 | $x^{14} - 464$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |