Normalized defining polynomial
\( x^{14} - 609 x^{11} - 18270 x^{10} + 30856 x^{9} - 429345 x^{8} + 24872343 x^{7} + 342372898 x^{6} + 947498643 x^{5} + 14862318170 x^{4} + 68261720093 x^{3} + 234668591136 x^{2} + 7015153824 x + 28996645309 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13760207184971837367389621368916758066523=-\,7^{25}\cdot 29^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $736.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1421=7^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1421}(1,·)$, $\chi_{1421}(34,·)$, $\chi_{1421}(1156,·)$, $\chi_{1421}(265,·)$, $\chi_{1421}(1387,·)$, $\chi_{1421}(1420,·)$, $\chi_{1421}(825,·)$, $\chi_{1421}(209,·)$, $\chi_{1421}(370,·)$, $\chi_{1421}(596,·)$, $\chi_{1421}(937,·)$, $\chi_{1421}(484,·)$, $\chi_{1421}(1051,·)$, $\chi_{1421}(1212,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{9} - \frac{1}{5} a^{3} + \frac{1}{5}$, $\frac{1}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{13} + \frac{377364444386716025577117209163027325076055488524959287187433606647096523}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{12} - \frac{39792440114637323548408743217534305025356579036155810705754790822820116}{793194673815321916168802209881571514094040309271482588561688082412573727} a^{11} + \frac{346695664761126075788516611846684944123722786755023770224700845522625837}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{10} + \frac{704127674303767302282835592948325161210758888668988445341205135508425813}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{9} + \frac{1148521732371299334230348617460090556699852473445895766225252870826384152}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{8} + \frac{1094494364397275407603264928544069184445219121859449083422544909355331197}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{7} - \frac{924574749805500006964403101540695976974117376765000059930459840984187559}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{6} - \frac{146562404710353505380879940405758378826471702871173254424310220137416495}{793194673815321916168802209881571514094040309271482588561688082412573727} a^{5} + \frac{1466450487987089331120703670533187694527217172164977560014318975069495501}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{4} + \frac{1458416156533339909376468497417755200967813741021140513179704837486133779}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{3} + \frac{1194611516908542848934919402824324210006529318524635243266651060234385986}{3965973369076609580844011049407857570470201546357412942808440412062868635} a^{2} - \frac{1027199290778459089158173143072710234904337664285183229246173559949358003}{3965973369076609580844011049407857570470201546357412942808440412062868635} a + \frac{553879874654705716933925165906088282821374653099325721101056005598836656}{3965973369076609580844011049407857570470201546357412942808440412062868635}$
Class group and class number
$C_{307748}$, which has order $307748$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 368248548.12946504 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), 7.7.8233120419813614521.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.14.25.72 | $x^{14} + 63 x^{13} + 35 x^{12} + 98 x^{11} + 98 x^{10} - 98 x^{9} + 147 x^{8} - 112 x^{7} - 49 x^{6} + 147 x^{5} + 98 x^{4} - 49 x^{3} + 147 x^{2} + 49 x + 63$ | $14$ | $1$ | $25$ | $C_{14}$ | $[2]_{2}$ |
| $29$ | 29.14.13.6 | $x^{14} - 29696$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |