Normalized defining polynomial
\( x^{14} - 5 x^{13} + 15 x^{12} - 75 x^{11} + 512 x^{10} - 682 x^{9} + 6620 x^{8} - 4227 x^{7} + 79540 x^{6} + 24230 x^{5} + 605069 x^{4} + 323699 x^{3} + 3152636 x^{2} + 2157359 x + 7742617 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-136055567791244518070906476247=-\,23^{7}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(989=23\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{989}(1,·)$, $\chi_{989}(643,·)$, $\chi_{989}(484,·)$, $\chi_{989}(551,·)$, $\chi_{989}(231,·)$, $\chi_{989}(47,·)$, $\chi_{989}(944,·)$, $\chi_{989}(689,·)$, $\chi_{989}(852,·)$, $\chi_{989}(967,·)$, $\chi_{989}(919,·)$, $\chi_{989}(666,·)$, $\chi_{989}(183,·)$, $\chi_{989}(735,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{4} - \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{5} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{561500671985851382906695774393333} a^{13} + \frac{20349145735541512301847375748553}{561500671985851382906695774393333} a^{12} - \frac{71829090040691733892962701746}{80214381712264483272385110627619} a^{11} + \frac{2759519346421436073555511249534}{561500671985851382906695774393333} a^{10} - \frac{148691603022091229748161332192601}{561500671985851382906695774393333} a^{9} - \frac{257299274835507504099169794234687}{561500671985851382906695774393333} a^{8} + \frac{149548727390520508428547044327392}{561500671985851382906695774393333} a^{7} + \frac{270405017605868781194086651326835}{561500671985851382906695774393333} a^{6} - \frac{179693787939131494614812935229393}{561500671985851382906695774393333} a^{5} + \frac{32907212582709195798967655242285}{80214381712264483272385110627619} a^{4} - \frac{134876354957357297989860258976088}{561500671985851382906695774393333} a^{3} - \frac{84143135598569272708179407946384}{561500671985851382906695774393333} a^{2} + \frac{20277714167975725554057495622186}{80214381712264483272385110627619} a + \frac{89574473398554143486283182785314}{561500671985851382906695774393333}$
Class group and class number
$C_{7899}$, which has order $7899$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.64185055774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.14.12.1 | $x^{14} + 3569 x^{7} + 4043763$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ |