Normalized defining polynomial
\( x^{14} - x^{13} + 45 x^{12} + 67 x^{11} + 585 x^{10} + 2263 x^{9} + 4916 x^{8} + 17291 x^{7} + 36289 x^{6} + 71331 x^{5} + 129077 x^{4} + 181931 x^{3} + 270017 x^{2} + 169588 x + 119189 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-134239384709553967597109375=-\,5^{7}\cdot 43^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(215=5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{215}(1,·)$, $\chi_{215}(194,·)$, $\chi_{215}(39,·)$, $\chi_{215}(41,·)$, $\chi_{215}(11,·)$, $\chi_{215}(204,·)$, $\chi_{215}(174,·)$, $\chi_{215}(16,·)$, $\chi_{215}(21,·)$, $\chi_{215}(214,·)$, $\chi_{215}(176,·)$, $\chi_{215}(121,·)$, $\chi_{215}(94,·)$, $\chi_{215}(199,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} - \frac{1}{49} a^{10} - \frac{1}{49} a^{9} + \frac{3}{49} a^{8} - \frac{1}{49} a^{7} + \frac{2}{49} a^{6} + \frac{5}{49} a^{5} - \frac{9}{49} a^{4} - \frac{15}{49} a^{3} - \frac{9}{49} a^{2} + \frac{11}{49} a + \frac{2}{7}$, $\frac{1}{432115859} a^{12} - \frac{52848}{8818691} a^{11} + \frac{28721810}{432115859} a^{10} + \frac{604416}{11678807} a^{9} - \frac{30570188}{432115859} a^{8} + \frac{1270235}{432115859} a^{7} + \frac{3289570}{61730837} a^{6} + \frac{22530602}{432115859} a^{5} - \frac{177760733}{432115859} a^{4} + \frac{100351283}{432115859} a^{3} + \frac{55844280}{432115859} a^{2} + \frac{15814285}{432115859} a - \frac{12152817}{61730837}$, $\frac{1}{2263801075822778737} a^{13} + \frac{2052718092}{2263801075822778737} a^{12} - \frac{2424315223633767}{2263801075822778737} a^{11} + \frac{44511743041277427}{2263801075822778737} a^{10} + \frac{90781117925049802}{2263801075822778737} a^{9} + \frac{2042997947005605}{61183812860075101} a^{8} - \frac{137547498484783949}{2263801075822778737} a^{7} - \frac{100793863084943550}{2263801075822778737} a^{6} - \frac{1121110692844993881}{2263801075822778737} a^{5} + \frac{870637730832056561}{2263801075822778737} a^{4} + \frac{1089308918085472547}{2263801075822778737} a^{3} + \frac{10034905503186705}{46200021955566913} a^{2} - \frac{942190709284734827}{2263801075822778737} a + \frac{30329494762905306}{323400153688968391}$
Class group and class number
$C_{2842}$, which has order $2842$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35991.6418506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-215}) \), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.14.7.2 | $x^{14} - 15625 x^{2} + 156250$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $43$ | 43.14.13.1 | $x^{14} - 43$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |