Normalized defining polynomial
\( x^{14} - 28 x^{11} - 21 x^{10} - 70 x^{9} + 189 x^{8} + 284 x^{7} + 1176 x^{6} + 1176 x^{5} + 1953 x^{4} + 791 x^{3} + 644 x^{2} + 133 x + 53 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1341068619663964900807=-\,7^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{589} a^{12} + \frac{64}{589} a^{11} - \frac{129}{589} a^{10} - \frac{87}{589} a^{9} - \frac{88}{589} a^{8} + \frac{227}{589} a^{7} + \frac{7}{31} a^{6} - \frac{222}{589} a^{5} - \frac{3}{19} a^{4} + \frac{198}{589} a^{3} - \frac{2}{31} a^{2} - \frac{44}{589} a - \frac{63}{589}$, $\frac{1}{48256443282289} a^{13} + \frac{23352535288}{48256443282289} a^{12} + \frac{17932092511358}{48256443282289} a^{11} - \frac{12722914876773}{48256443282289} a^{10} + \frac{8090747044228}{48256443282289} a^{9} + \frac{18747152437503}{48256443282289} a^{8} - \frac{327400370115}{1556659460719} a^{7} + \frac{20193905590181}{48256443282289} a^{6} + \frac{16534279153356}{48256443282289} a^{5} - \frac{13227227642975}{48256443282289} a^{4} - \frac{23212761215707}{48256443282289} a^{3} + \frac{682912560872}{48256443282289} a^{2} - \frac{10979054517740}{48256443282289} a - \frac{3293353698507}{48256443282289}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73205.1735676 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7\times D_7$ (as 14T8):
| A solvable group of order 98 |
| The 35 conjugacy class representatives for $C_7 \wr C_2$ |
| Character table for $C_7 \wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/3.14.0.1}{14} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||