Normalized defining polynomial
\( x^{14} - 2 x^{13} + 271 x^{12} - 466 x^{11} + 33450 x^{10} - 47544 x^{9} + 2428667 x^{8} - 2706408 x^{7} + 111457382 x^{6} - 90555574 x^{5} + 3215339330 x^{4} - 1691924612 x^{3} + 53691865357 x^{2} - 13804563006 x + 398209394731 \)
Invariants
| Degree: | $14$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1336413785513566222733246057152512=-\,2^{21}\cdot 3^{7}\cdot 7^{7}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $232.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4872=2^{3}\cdot 3\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4872}(1,·)$, $\chi_{4872}(3529,·)$, $\chi_{4872}(1763,·)$, $\chi_{4872}(2017,·)$, $\chi_{4872}(4201,·)$, $\chi_{4872}(587,·)$, $\chi_{4872}(923,·)$, $\chi_{4872}(1009,·)$, $\chi_{4872}(83,·)$, $\chi_{4872}(755,·)$, $\chi_{4872}(2771,·)$, $\chi_{4872}(4705,·)$, $\chi_{4872}(169,·)$, $\chi_{4872}(4283,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} - \frac{7}{17} a^{9} - \frac{2}{17} a^{8} - \frac{2}{17} a^{6} - \frac{2}{17} a^{5} - \frac{7}{17} a^{4} - \frac{3}{17} a^{3} + \frac{5}{17} a^{2} + \frac{7}{17} a$, $\frac{1}{17} a^{11} + \frac{3}{17} a^{8} - \frac{2}{17} a^{7} + \frac{1}{17} a^{6} - \frac{4}{17} a^{5} - \frac{1}{17} a^{4} + \frac{1}{17} a^{3} + \frac{8}{17} a^{2} - \frac{2}{17} a$, $\frac{1}{11849} a^{12} + \frac{4}{11849} a^{11} - \frac{215}{11849} a^{10} - \frac{3796}{11849} a^{9} + \frac{1834}{11849} a^{8} + \frac{3580}{11849} a^{7} - \frac{1865}{11849} a^{6} - \frac{5231}{11849} a^{5} + \frac{30}{289} a^{4} + \frac{89}{289} a^{3} + \frac{5432}{11849} a^{2} + \frac{135}{697} a - \frac{6}{41}$, $\frac{1}{12170445126899968252060737197804181552523049} a^{13} - \frac{194664739351522052621343333372238381458}{12170445126899968252060737197804181552523049} a^{12} - \frac{105425503044806608198662055033460265476724}{12170445126899968252060737197804181552523049} a^{11} + \frac{143663688113983346116251406655791854887119}{12170445126899968252060737197804181552523049} a^{10} + \frac{138842654245874467526663889978168760701333}{12170445126899968252060737197804181552523049} a^{9} + \frac{5828775894537285630159962700004712718256117}{12170445126899968252060737197804181552523049} a^{8} + \frac{2317490984934575121820291813546821148976968}{12170445126899968252060737197804181552523049} a^{7} + \frac{4141073820048540260595811539606038868586934}{12170445126899968252060737197804181552523049} a^{6} + \frac{2384729216661116119135178934164376967280684}{12170445126899968252060737197804181552523049} a^{5} - \frac{74280016891143218362919866779685315578355}{296840125046340689074652126775711745183489} a^{4} - \frac{1836228499124915926451590642003168392655}{715908536876468720709455129282598914854297} a^{3} - \frac{2344785645899964469091551643349030142776985}{12170445126899968252060737197804181552523049} a^{2} + \frac{255926982902904907290198515722670309791844}{715908536876468720709455129282598914854297} a + \frac{53375187641060679543690580483213188523}{220483072644431389192933516871758212151}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1075858}$, which has order $17213728$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6020.985100147561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 14 |
| The 14 conjugacy class representatives for $C_{14}$ |
| Character table for $C_{14}$ |
Intermediate fields
| \(\Q(\sqrt{-42}) \), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{14}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.14.21.40 | $x^{14} + 8 x^{13} - 4 x^{12} + 4 x^{11} + 5 x^{10} - 4 x^{9} - 4 x^{8} + 2 x^{7} - x^{6} + 6 x^{5} - 4 x^{4} + 6 x^{3} + 3 x^{2} + 6 x + 3$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ |
| $3$ | 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $7$ | 7.14.7.2 | $x^{14} - 686 x^{8} + 117649 x^{2} - 3294172$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |